Spaces:
Running
Running
add missing dependencies
Browse files- document_qa_engine.py +0 -2
- grobid_processors.py +726 -0
- streamlit_app.py +3 -3
document_qa_engine.py
CHANGED
|
@@ -12,8 +12,6 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
| 12 |
from langchain.vectorstores import Chroma
|
| 13 |
from tqdm import tqdm
|
| 14 |
|
| 15 |
-
from commons.annotations_utils import GrobidProcessor
|
| 16 |
-
|
| 17 |
|
| 18 |
class DocumentQAEngine:
|
| 19 |
llm = None
|
|
|
|
| 12 |
from langchain.vectorstores import Chroma
|
| 13 |
from tqdm import tqdm
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
class DocumentQAEngine:
|
| 17 |
llm = None
|
grobid_processors.py
ADDED
|
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from html import escape
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import dateparser
|
| 7 |
+
import grobid_tei_xml
|
| 8 |
+
from bs4 import BeautifulSoup
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
from commons import supermat_tei_parser
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_span_start(type, title=None):
|
| 15 |
+
title_ = ' title="' + title + '"' if title is not None else ""
|
| 16 |
+
return '<span class="label ' + type + '"' + title_ + '>'
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_span_end():
|
| 20 |
+
return '</span>'
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_rs_start(type):
|
| 24 |
+
return '<rs type="' + type + '">'
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_rs_end():
|
| 28 |
+
return '</rs>'
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def has_space_between_value_and_unit(quantity):
|
| 32 |
+
return quantity['offsetEnd'] < quantity['rawUnit']['offsetStart']
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def decorate_text_with_annotations(text, spans, tag="span"):
|
| 36 |
+
"""
|
| 37 |
+
Decorate a text using spans, using two style defined by the tag:
|
| 38 |
+
- "span" generated HTML like annotated text
|
| 39 |
+
- "rs" generate XML like annotated text (format SuperMat)
|
| 40 |
+
"""
|
| 41 |
+
sorted_spans = list(sorted(spans, key=lambda item: item['offset_start']))
|
| 42 |
+
annotated_text = ""
|
| 43 |
+
start = 0
|
| 44 |
+
for span in sorted_spans:
|
| 45 |
+
type = span['type'].replace("<", "").replace(">", "")
|
| 46 |
+
if 'unit_type' in span and span['unit_type'] is not None:
|
| 47 |
+
type = span['unit_type'].replace(" ", "_")
|
| 48 |
+
annotated_text += escape(text[start: span['offset_start']])
|
| 49 |
+
title = span['quantified'] if 'quantified' in span else None
|
| 50 |
+
annotated_text += get_span_start(type, title) if tag == "span" else get_rs_start(type)
|
| 51 |
+
annotated_text += escape(text[span['offset_start']: span['offset_end']])
|
| 52 |
+
annotated_text += get_span_end() if tag == "span" else get_rs_end()
|
| 53 |
+
|
| 54 |
+
start = span['offset_end']
|
| 55 |
+
annotated_text += escape(text[start: len(text)])
|
| 56 |
+
return annotated_text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def extract_quantities(client, x_all, column_text_index):
|
| 60 |
+
# relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product',
|
| 61 |
+
# "magnetic flux density", "magnetic flux"]
|
| 62 |
+
# property_keywords = ['coercivity', 'remanence']
|
| 63 |
+
|
| 64 |
+
output_data = []
|
| 65 |
+
|
| 66 |
+
for idx, example in tqdm(enumerate(x_all), desc="extract quantities"):
|
| 67 |
+
text = example[column_text_index]
|
| 68 |
+
spans = GrobidQuantitiesProcessor(client).extract_quantities(text)
|
| 69 |
+
|
| 70 |
+
data_record = {
|
| 71 |
+
"id": example[0],
|
| 72 |
+
"filename": example[1],
|
| 73 |
+
"passage_id": example[2],
|
| 74 |
+
"text": text,
|
| 75 |
+
"spans": spans
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
output_data.append(data_record)
|
| 79 |
+
|
| 80 |
+
return output_data
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def extract_materials(client, x_all, column_text_index):
|
| 84 |
+
output_data = []
|
| 85 |
+
|
| 86 |
+
for idx, example in tqdm(enumerate(x_all), desc="extract materials"):
|
| 87 |
+
text = example[column_text_index]
|
| 88 |
+
spans = GrobidMaterialsProcessor(client).extract_materials(text)
|
| 89 |
+
data_record = {
|
| 90 |
+
"id": example[0],
|
| 91 |
+
"filename": example[1],
|
| 92 |
+
"passage_id": example[2],
|
| 93 |
+
"text": text,
|
| 94 |
+
"spans": spans
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
output_data.append(data_record)
|
| 98 |
+
|
| 99 |
+
return output_data
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_parsed_value_type(quantity):
|
| 103 |
+
if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
|
| 104 |
+
return quantity['parsedValue']['structure']['type']
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class BaseProcessor(object):
|
| 108 |
+
# def __init__(self, grobid_superconductors_client=None, grobid_quantities_client=None):
|
| 109 |
+
# self.grobid_superconductors_client = grobid_superconductors_client
|
| 110 |
+
# self.grobid_quantities_client = grobid_quantities_client
|
| 111 |
+
|
| 112 |
+
patterns = [
|
| 113 |
+
r'\d+e\d+'
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
def post_process(self, text):
|
| 117 |
+
output = text.replace('À', '-')
|
| 118 |
+
output = output.replace('¼', '=')
|
| 119 |
+
output = output.replace('þ', '+')
|
| 120 |
+
output = output.replace('Â', 'x')
|
| 121 |
+
output = output.replace('$', '~')
|
| 122 |
+
output = output.replace('−', '-')
|
| 123 |
+
output = output.replace('–', '-')
|
| 124 |
+
|
| 125 |
+
for pattern in self.patterns:
|
| 126 |
+
output = re.sub(pattern, lambda match: match.group().replace('e', '-'), output)
|
| 127 |
+
|
| 128 |
+
return output
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class GrobidProcessor(BaseProcessor):
|
| 132 |
+
def __init__(self, grobid_client):
|
| 133 |
+
# super().__init__()
|
| 134 |
+
self.grobid_client = grobid_client
|
| 135 |
+
|
| 136 |
+
def process_structure(self, input_path):
|
| 137 |
+
pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
|
| 138 |
+
input_path,
|
| 139 |
+
consolidate_header=True,
|
| 140 |
+
consolidate_citations=False,
|
| 141 |
+
segment_sentences=False,
|
| 142 |
+
tei_coordinates=False,
|
| 143 |
+
include_raw_citations=False,
|
| 144 |
+
include_raw_affiliations=False,
|
| 145 |
+
generateIDs=True)
|
| 146 |
+
|
| 147 |
+
if status != 200:
|
| 148 |
+
return
|
| 149 |
+
|
| 150 |
+
output_data = self.parse_grobid_xml(text)
|
| 151 |
+
output_data['filename'] = Path(pdf_file).stem.replace(".tei", "")
|
| 152 |
+
|
| 153 |
+
return output_data
|
| 154 |
+
|
| 155 |
+
def process_single(self, input_file):
|
| 156 |
+
doc = self.process_structure(input_file)
|
| 157 |
+
|
| 158 |
+
for paragraph in doc['passages']:
|
| 159 |
+
entities = self.process_single_text(paragraph['text'])
|
| 160 |
+
paragraph['spans'] = entities
|
| 161 |
+
|
| 162 |
+
return doc
|
| 163 |
+
|
| 164 |
+
def parse_grobid_xml(self, text):
|
| 165 |
+
output_data = OrderedDict()
|
| 166 |
+
|
| 167 |
+
doc_biblio = grobid_tei_xml.parse_document_xml(text)
|
| 168 |
+
biblio = {
|
| 169 |
+
"doi": doc_biblio.header.doi if doc_biblio.header.doi is not None else "",
|
| 170 |
+
"authors": ", ".join([author.full_name for author in doc_biblio.header.authors]),
|
| 171 |
+
"title": doc_biblio.header.title,
|
| 172 |
+
"hash": doc_biblio.pdf_md5
|
| 173 |
+
}
|
| 174 |
+
try:
|
| 175 |
+
year = dateparser.parse(doc_biblio.header.date).year
|
| 176 |
+
biblio["year"] = year
|
| 177 |
+
except:
|
| 178 |
+
pass
|
| 179 |
+
|
| 180 |
+
output_data['biblio'] = biblio
|
| 181 |
+
|
| 182 |
+
passages = []
|
| 183 |
+
output_data['passages'] = passages
|
| 184 |
+
# if biblio['title'] is not None and len(biblio['title']) > 0:
|
| 185 |
+
# passages.append({
|
| 186 |
+
# "text": self.post_process(biblio['title']),
|
| 187 |
+
# "type": "paragraph",
|
| 188 |
+
# "section": "<header>",
|
| 189 |
+
# "subSection": "<title>",
|
| 190 |
+
# "passage_id": "title0"
|
| 191 |
+
# })
|
| 192 |
+
|
| 193 |
+
if doc_biblio.abstract is not None and len(doc_biblio.abstract) > 0:
|
| 194 |
+
passages.append({
|
| 195 |
+
"text": self.post_process(doc_biblio.abstract),
|
| 196 |
+
"type": "paragraph",
|
| 197 |
+
"section": "<header>",
|
| 198 |
+
"subSection": "<abstract>",
|
| 199 |
+
"passage_id": "abstract0"
|
| 200 |
+
})
|
| 201 |
+
|
| 202 |
+
soup = BeautifulSoup(text, 'xml')
|
| 203 |
+
text_blocks_body = get_children_body(soup, verbose=False)
|
| 204 |
+
|
| 205 |
+
passages.extend([
|
| 206 |
+
{
|
| 207 |
+
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
|
| 208 |
+
text.parent.name != "ref" or (
|
| 209 |
+
text.parent.name == "ref" and text.parent.attrs[
|
| 210 |
+
'type'] != 'bibr'))),
|
| 211 |
+
"type": "paragraph",
|
| 212 |
+
"section": "<body>",
|
| 213 |
+
"subSection": "<paragraph>",
|
| 214 |
+
"passage_id": str(paragraph_id) + str(sentence_id)
|
| 215 |
+
}
|
| 216 |
+
for paragraph_id, paragraph in enumerate(text_blocks_body) for
|
| 217 |
+
sentence_id, sentence in enumerate(paragraph)
|
| 218 |
+
])
|
| 219 |
+
|
| 220 |
+
text_blocks_figures = get_children_figures(soup, verbose=False)
|
| 221 |
+
|
| 222 |
+
passages.extend([
|
| 223 |
+
{
|
| 224 |
+
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
|
| 225 |
+
text.parent.name != "ref" or (
|
| 226 |
+
text.parent.name == "ref" and text.parent.attrs[
|
| 227 |
+
'type'] != 'bibr'))),
|
| 228 |
+
"type": "paragraph",
|
| 229 |
+
"section": "<body>",
|
| 230 |
+
"subSection": "<figure>",
|
| 231 |
+
"passage_id": str(paragraph_id) + str(sentence_id)
|
| 232 |
+
}
|
| 233 |
+
for paragraph_id, paragraph in enumerate(text_blocks_figures) for
|
| 234 |
+
sentence_id, sentence in enumerate(paragraph)
|
| 235 |
+
])
|
| 236 |
+
|
| 237 |
+
return output_data
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class GrobidQuantitiesProcessor(BaseProcessor):
|
| 241 |
+
def __init__(self, grobid_quantities_client):
|
| 242 |
+
self.grobid_quantities_client = grobid_quantities_client
|
| 243 |
+
|
| 244 |
+
def extract_quantities(self, text):
|
| 245 |
+
status, result = self.grobid_quantities_client.process_text(text.strip())
|
| 246 |
+
|
| 247 |
+
if status != 200:
|
| 248 |
+
result = {}
|
| 249 |
+
|
| 250 |
+
spans = []
|
| 251 |
+
|
| 252 |
+
if 'measurements' in result:
|
| 253 |
+
found_measurements = self.parse_measurements_output(result)
|
| 254 |
+
|
| 255 |
+
for m in found_measurements:
|
| 256 |
+
item = {
|
| 257 |
+
"text": text[m['offset_start']:m['offset_end']],
|
| 258 |
+
'offset_start': m['offset_start'],
|
| 259 |
+
'offset_end': m['offset_end']
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
if 'raw' in m and m['raw'] != item['text']:
|
| 263 |
+
item['text'] = m['raw']
|
| 264 |
+
|
| 265 |
+
if 'quantified_substance' in m:
|
| 266 |
+
item['quantified'] = m['quantified_substance']
|
| 267 |
+
|
| 268 |
+
if 'type' in m:
|
| 269 |
+
item["unit_type"] = m['type']
|
| 270 |
+
|
| 271 |
+
item['type'] = 'property'
|
| 272 |
+
# if 'raw_value' in m:
|
| 273 |
+
# item['raw_value'] = m['raw_value']
|
| 274 |
+
|
| 275 |
+
spans.append(item)
|
| 276 |
+
|
| 277 |
+
return spans
|
| 278 |
+
|
| 279 |
+
@staticmethod
|
| 280 |
+
def parse_measurements_output(result):
|
| 281 |
+
measurements_output = []
|
| 282 |
+
|
| 283 |
+
for measurement in result['measurements']:
|
| 284 |
+
type = measurement['type']
|
| 285 |
+
measurement_output_object = {}
|
| 286 |
+
quantity_type = None
|
| 287 |
+
has_unit = False
|
| 288 |
+
parsed_value_type = None
|
| 289 |
+
|
| 290 |
+
if 'quantified' in measurement:
|
| 291 |
+
if 'normalizedName' in measurement['quantified']:
|
| 292 |
+
quantified_substance = measurement['quantified']['normalizedName']
|
| 293 |
+
measurement_output_object["quantified_substance"] = quantified_substance
|
| 294 |
+
|
| 295 |
+
if 'measurementOffsets' in measurement:
|
| 296 |
+
measurement_output_object["offset_start"] = measurement["measurementOffsets"]['start']
|
| 297 |
+
measurement_output_object["offset_end"] = measurement["measurementOffsets"]['end']
|
| 298 |
+
else:
|
| 299 |
+
# If there are no offsets we skip the measurement
|
| 300 |
+
continue
|
| 301 |
+
|
| 302 |
+
# if 'measurementRaw' in measurement:
|
| 303 |
+
# measurement_output_object['raw_value'] = measurement['measurementRaw']
|
| 304 |
+
|
| 305 |
+
if type == 'value':
|
| 306 |
+
quantity = measurement['quantity']
|
| 307 |
+
|
| 308 |
+
parsed_value = GrobidQuantitiesProcessor.get_parsed(quantity)
|
| 309 |
+
if parsed_value:
|
| 310 |
+
measurement_output_object['parsed'] = parsed_value
|
| 311 |
+
|
| 312 |
+
normalized_value = GrobidQuantitiesProcessor.get_normalized(quantity)
|
| 313 |
+
if normalized_value:
|
| 314 |
+
measurement_output_object['normalized'] = normalized_value
|
| 315 |
+
|
| 316 |
+
raw_value = GrobidQuantitiesProcessor.get_raw(quantity)
|
| 317 |
+
if raw_value:
|
| 318 |
+
measurement_output_object['raw'] = raw_value
|
| 319 |
+
|
| 320 |
+
if 'type' in quantity:
|
| 321 |
+
quantity_type = quantity['type']
|
| 322 |
+
|
| 323 |
+
if 'rawUnit' in quantity:
|
| 324 |
+
has_unit = True
|
| 325 |
+
|
| 326 |
+
parsed_value_type = get_parsed_value_type(quantity)
|
| 327 |
+
|
| 328 |
+
elif type == 'interval':
|
| 329 |
+
if 'quantityMost' in measurement:
|
| 330 |
+
quantityMost = measurement['quantityMost']
|
| 331 |
+
if 'type' in quantityMost:
|
| 332 |
+
quantity_type = quantityMost['type']
|
| 333 |
+
|
| 334 |
+
if 'rawUnit' in quantityMost:
|
| 335 |
+
has_unit = True
|
| 336 |
+
|
| 337 |
+
parsed_value_type = get_parsed_value_type(quantityMost)
|
| 338 |
+
|
| 339 |
+
if 'quantityLeast' in measurement:
|
| 340 |
+
quantityLeast = measurement['quantityLeast']
|
| 341 |
+
|
| 342 |
+
if 'type' in quantityLeast:
|
| 343 |
+
quantity_type = quantityLeast['type']
|
| 344 |
+
|
| 345 |
+
if 'rawUnit' in quantityLeast:
|
| 346 |
+
has_unit = True
|
| 347 |
+
|
| 348 |
+
parsed_value_type = get_parsed_value_type(quantityLeast)
|
| 349 |
+
|
| 350 |
+
elif type == 'listc':
|
| 351 |
+
quantities = measurement['quantities']
|
| 352 |
+
|
| 353 |
+
if 'type' in quantities[0]:
|
| 354 |
+
quantity_type = quantities[0]['type']
|
| 355 |
+
|
| 356 |
+
if 'rawUnit' in quantities[0]:
|
| 357 |
+
has_unit = True
|
| 358 |
+
|
| 359 |
+
parsed_value_type = get_parsed_value_type(quantities[0])
|
| 360 |
+
|
| 361 |
+
if quantity_type is not None or has_unit:
|
| 362 |
+
measurement_output_object['type'] = quantity_type
|
| 363 |
+
|
| 364 |
+
if parsed_value_type is None or parsed_value_type not in ['ALPHABETIC', 'TIME']:
|
| 365 |
+
measurements_output.append(measurement_output_object)
|
| 366 |
+
|
| 367 |
+
return measurements_output
|
| 368 |
+
|
| 369 |
+
@staticmethod
|
| 370 |
+
def get_parsed(quantity):
|
| 371 |
+
parsed_value = parsed_unit = None
|
| 372 |
+
if 'parsedValue' in quantity and 'parsed' in quantity['parsedValue']:
|
| 373 |
+
parsed_value = quantity['parsedValue']['parsed']
|
| 374 |
+
if 'parsedUnit' in quantity and 'name' in quantity['parsedUnit']:
|
| 375 |
+
parsed_unit = quantity['parsedUnit']['name']
|
| 376 |
+
|
| 377 |
+
if parsed_value and parsed_unit:
|
| 378 |
+
if has_space_between_value_and_unit(quantity):
|
| 379 |
+
return str(parsed_value) + str(parsed_unit)
|
| 380 |
+
else:
|
| 381 |
+
return str(parsed_value) + " " + str(parsed_unit)
|
| 382 |
+
|
| 383 |
+
@staticmethod
|
| 384 |
+
def get_normalized(quantity):
|
| 385 |
+
normalized_value = normalized_unit = None
|
| 386 |
+
if 'normalizedQuantity' in quantity:
|
| 387 |
+
normalized_value = quantity['normalizedQuantity']
|
| 388 |
+
if 'normalizedUnit' in quantity and 'name' in quantity['normalizedUnit']:
|
| 389 |
+
normalized_unit = quantity['normalizedUnit']['name']
|
| 390 |
+
|
| 391 |
+
if normalized_value and normalized_unit:
|
| 392 |
+
if has_space_between_value_and_unit(quantity):
|
| 393 |
+
return str(normalized_value) + " " + str(normalized_unit)
|
| 394 |
+
else:
|
| 395 |
+
return str(normalized_value) + str(normalized_unit)
|
| 396 |
+
|
| 397 |
+
@staticmethod
|
| 398 |
+
def get_raw(quantity):
|
| 399 |
+
raw_value = raw_unit = None
|
| 400 |
+
if 'rawValue' in quantity:
|
| 401 |
+
raw_value = quantity['rawValue']
|
| 402 |
+
if 'rawUnit' in quantity and 'name' in quantity['rawUnit']:
|
| 403 |
+
raw_unit = quantity['rawUnit']['name']
|
| 404 |
+
|
| 405 |
+
if raw_value and raw_unit:
|
| 406 |
+
if has_space_between_value_and_unit(quantity):
|
| 407 |
+
return str(raw_value) + " " + str(raw_unit)
|
| 408 |
+
else:
|
| 409 |
+
return str(raw_value) + str(raw_unit)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
class GrobidMaterialsProcessor(BaseProcessor):
|
| 413 |
+
def __init__(self, grobid_superconductors_client):
|
| 414 |
+
self.grobid_superconductors_client = grobid_superconductors_client
|
| 415 |
+
|
| 416 |
+
def extract_materials(self, text):
|
| 417 |
+
status, result = self.grobid_superconductors_client.process_text(text.strip(), "processText_disable_linking")
|
| 418 |
+
|
| 419 |
+
if status != 200:
|
| 420 |
+
result = {}
|
| 421 |
+
|
| 422 |
+
spans = []
|
| 423 |
+
|
| 424 |
+
if 'passages' in result:
|
| 425 |
+
materials = self.parse_superconductors_output(result, text)
|
| 426 |
+
|
| 427 |
+
for m in materials:
|
| 428 |
+
item = {"text": text[m['offset_start']:m['offset_end']]}
|
| 429 |
+
|
| 430 |
+
item['offset_start'] = m['offset_start']
|
| 431 |
+
item['offset_end'] = m['offset_end']
|
| 432 |
+
|
| 433 |
+
if 'formula' in m:
|
| 434 |
+
item["formula"] = m['formula']
|
| 435 |
+
|
| 436 |
+
item['type'] = 'material'
|
| 437 |
+
item['raw_value'] = m['text']
|
| 438 |
+
|
| 439 |
+
spans.append(item)
|
| 440 |
+
|
| 441 |
+
return spans
|
| 442 |
+
|
| 443 |
+
def parse_materials(self, text):
|
| 444 |
+
status, result = self.grobid_superconductors_client.process_texts(text.strip(), "parseMaterials")
|
| 445 |
+
|
| 446 |
+
if status != 200:
|
| 447 |
+
result = []
|
| 448 |
+
|
| 449 |
+
results = []
|
| 450 |
+
for position_material in result:
|
| 451 |
+
compositions = []
|
| 452 |
+
for material in position_material:
|
| 453 |
+
if 'resolvedFormulas' in material:
|
| 454 |
+
for resolved_formula in material['resolvedFormulas']:
|
| 455 |
+
if 'formulaComposition' in resolved_formula:
|
| 456 |
+
compositions.append(resolved_formula['formulaComposition'])
|
| 457 |
+
elif 'formula' in material:
|
| 458 |
+
if 'formulaComposition' in material['formula']:
|
| 459 |
+
compositions.append(material['formula']['formulaComposition'])
|
| 460 |
+
results.append(compositions)
|
| 461 |
+
|
| 462 |
+
return results
|
| 463 |
+
|
| 464 |
+
def parse_material(self, text):
|
| 465 |
+
status, result = self.grobid_superconductors_client.process_text(text.strip(), "parseMaterial")
|
| 466 |
+
|
| 467 |
+
if status != 200:
|
| 468 |
+
result = []
|
| 469 |
+
|
| 470 |
+
compositions = []
|
| 471 |
+
for material in result:
|
| 472 |
+
if 'resolvedFormulas' in material:
|
| 473 |
+
for resolved_formula in material['resolvedFormulas']:
|
| 474 |
+
if 'formulaComposition' in resolved_formula:
|
| 475 |
+
compositions.append(resolved_formula['formulaComposition'])
|
| 476 |
+
elif 'formula' in material:
|
| 477 |
+
if 'formulaComposition' in material['formula']:
|
| 478 |
+
compositions.append(material['formula']['formulaComposition'])
|
| 479 |
+
|
| 480 |
+
return compositions
|
| 481 |
+
|
| 482 |
+
@staticmethod
|
| 483 |
+
def parse_superconductors_output(result, original_text):
|
| 484 |
+
materials = []
|
| 485 |
+
|
| 486 |
+
for passage in result['passages']:
|
| 487 |
+
sentence_offset = original_text.index(passage['text'])
|
| 488 |
+
if 'spans' in passage:
|
| 489 |
+
spans = passage['spans']
|
| 490 |
+
for material_span in filter(lambda s: s['type'] == '<material>', spans):
|
| 491 |
+
text_ = material_span['text']
|
| 492 |
+
|
| 493 |
+
base_material_information = {
|
| 494 |
+
"text": text_,
|
| 495 |
+
"offset_start": sentence_offset + material_span['offset_start'],
|
| 496 |
+
'offset_end': sentence_offset + material_span['offset_end']
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
materials.append(base_material_information)
|
| 500 |
+
|
| 501 |
+
return materials
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, GrobidMaterialsProcessor):
|
| 505 |
+
def __init__(self, grobid_client, grobid_quantities_client=None, grobid_superconductors_client=None):
|
| 506 |
+
GrobidProcessor.__init__(self, grobid_client)
|
| 507 |
+
GrobidQuantitiesProcessor.__init__(self, grobid_quantities_client)
|
| 508 |
+
GrobidMaterialsProcessor.__init__(self, grobid_superconductors_client)
|
| 509 |
+
|
| 510 |
+
def process_single_text(self, text):
|
| 511 |
+
extracted_quantities_spans = extract_quantities(self.grobid_quantities_client, text)
|
| 512 |
+
extracted_materials_spans = extract_materials(self.grobid_superconductors_client, text)
|
| 513 |
+
all_entities = extracted_quantities_spans + extracted_materials_spans
|
| 514 |
+
entities = self.prune_overlapping_annotations(all_entities)
|
| 515 |
+
return entities
|
| 516 |
+
|
| 517 |
+
@staticmethod
|
| 518 |
+
def prune_overlapping_annotations(entities: list) -> list:
|
| 519 |
+
# Sorting by offsets
|
| 520 |
+
sorted_entities = sorted(entities, key=lambda d: d['offset_start'])
|
| 521 |
+
|
| 522 |
+
if len(entities) <= 1:
|
| 523 |
+
return sorted_entities
|
| 524 |
+
|
| 525 |
+
to_be_removed = []
|
| 526 |
+
|
| 527 |
+
previous = None
|
| 528 |
+
first = True
|
| 529 |
+
|
| 530 |
+
for current in sorted_entities:
|
| 531 |
+
if first:
|
| 532 |
+
first = False
|
| 533 |
+
previous = current
|
| 534 |
+
continue
|
| 535 |
+
|
| 536 |
+
if previous['offset_start'] < current['offset_start'] \
|
| 537 |
+
and previous['offset_end'] < current['offset_end'] \
|
| 538 |
+
and (previous['offset_end'] < current['offset_start'] \
|
| 539 |
+
and not (previous['text'] == "-" and current['text'][0].isdigit())):
|
| 540 |
+
previous = current
|
| 541 |
+
continue
|
| 542 |
+
|
| 543 |
+
if previous['offset_end'] < current['offset_end']:
|
| 544 |
+
if current['type'] == previous['type']:
|
| 545 |
+
# Type is the same
|
| 546 |
+
if current['offset_start'] == previous['offset_end']:
|
| 547 |
+
if current['type'] == 'property':
|
| 548 |
+
if current['text'].startswith("."):
|
| 549 |
+
print(
|
| 550 |
+
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 551 |
+
# current entity starts with a ".", suspiciously look like a truncated value
|
| 552 |
+
to_be_removed.append(previous)
|
| 553 |
+
current['text'] = previous['text'] + current['text']
|
| 554 |
+
current['raw_value'] = current['text']
|
| 555 |
+
current['offset_start'] = previous['offset_start']
|
| 556 |
+
elif previous['text'].endswith(".") and current['text'][0].isdigit():
|
| 557 |
+
print(
|
| 558 |
+
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 559 |
+
# previous entity ends with ".", current entity starts with a number
|
| 560 |
+
to_be_removed.append(previous)
|
| 561 |
+
current['text'] = previous['text'] + current['text']
|
| 562 |
+
current['raw_value'] = current['text']
|
| 563 |
+
current['offset_start'] = previous['offset_start']
|
| 564 |
+
elif previous['text'].startswith("-"):
|
| 565 |
+
print(
|
| 566 |
+
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 567 |
+
# previous starts with a `-`, sherlock this is another truncated value
|
| 568 |
+
current['text'] = previous['text'] + current['text']
|
| 569 |
+
current['raw_value'] = current['text']
|
| 570 |
+
current['offset_start'] = previous['offset_start']
|
| 571 |
+
to_be_removed.append(previous)
|
| 572 |
+
else:
|
| 573 |
+
print("Other cases to be considered: ", previous, current)
|
| 574 |
+
else:
|
| 575 |
+
if current['text'].startswith("-"):
|
| 576 |
+
print(
|
| 577 |
+
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 578 |
+
# previous starts with a `-`, sherlock this is another truncated value
|
| 579 |
+
current['text'] = previous['text'] + current['text']
|
| 580 |
+
current['raw_value'] = current['text']
|
| 581 |
+
current['offset_start'] = previous['offset_start']
|
| 582 |
+
to_be_removed.append(previous)
|
| 583 |
+
else:
|
| 584 |
+
print("Other cases to be considered: ", previous, current)
|
| 585 |
+
|
| 586 |
+
elif previous['text'] == "-" and current['text'][0].isdigit():
|
| 587 |
+
print(
|
| 588 |
+
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 589 |
+
# previous starts with a `-`, sherlock this is another truncated value
|
| 590 |
+
current['text'] = previous['text'] + " " * (current['offset_start'] - previous['offset_end']) + \
|
| 591 |
+
current['text']
|
| 592 |
+
current['raw_value'] = current['text']
|
| 593 |
+
current['offset_start'] = previous['offset_start']
|
| 594 |
+
to_be_removed.append(previous)
|
| 595 |
+
else:
|
| 596 |
+
print(
|
| 597 |
+
f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 598 |
+
|
| 599 |
+
# take the largest one
|
| 600 |
+
if len(previous['text']) > len(current['text']):
|
| 601 |
+
to_be_removed.append(current)
|
| 602 |
+
elif len(previous['text']) < len(current['text']):
|
| 603 |
+
to_be_removed.append(previous)
|
| 604 |
+
else:
|
| 605 |
+
to_be_removed.append(previous)
|
| 606 |
+
elif current['type'] != previous['type']:
|
| 607 |
+
print(
|
| 608 |
+
f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
|
| 609 |
+
|
| 610 |
+
if len(previous['text']) > len(current['text']):
|
| 611 |
+
to_be_removed.append(current)
|
| 612 |
+
elif len(previous['text']) < len(current['text']):
|
| 613 |
+
to_be_removed.append(previous)
|
| 614 |
+
else:
|
| 615 |
+
if current['type'] == "material":
|
| 616 |
+
to_be_removed.append(previous)
|
| 617 |
+
else:
|
| 618 |
+
to_be_removed.append(current)
|
| 619 |
+
previous = current
|
| 620 |
+
|
| 621 |
+
elif previous['offset_end'] > current['offset_end']:
|
| 622 |
+
to_be_removed.append(current)
|
| 623 |
+
# the previous goes after the current, so we keep the previous and we discard the current
|
| 624 |
+
else:
|
| 625 |
+
if current['type'] == "material":
|
| 626 |
+
to_be_removed.append(previous)
|
| 627 |
+
else:
|
| 628 |
+
to_be_removed.append(current)
|
| 629 |
+
previous = current
|
| 630 |
+
|
| 631 |
+
new_sorted_entities = [e for e in sorted_entities if e not in to_be_removed]
|
| 632 |
+
|
| 633 |
+
return new_sorted_entities
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
class XmlProcessor(BaseProcessor):
|
| 637 |
+
def __init__(self, grobid_superconductors_client, grobid_quantities_client):
|
| 638 |
+
super().__init__(grobid_superconductors_client, grobid_quantities_client)
|
| 639 |
+
|
| 640 |
+
def process_structure(self, input_file):
|
| 641 |
+
text = ""
|
| 642 |
+
with open(input_file, encoding='utf-8') as fi:
|
| 643 |
+
text = fi.read()
|
| 644 |
+
|
| 645 |
+
output_data = self.parse_xml(text)
|
| 646 |
+
output_data['filename'] = Path(input_file).stem.replace(".tei", "")
|
| 647 |
+
|
| 648 |
+
return output_data
|
| 649 |
+
|
| 650 |
+
def process_single(self, input_file):
|
| 651 |
+
doc = self.process_structure(input_file)
|
| 652 |
+
|
| 653 |
+
for paragraph in doc['passages']:
|
| 654 |
+
entities = self.process_single_text(paragraph['text'])
|
| 655 |
+
paragraph['spans'] = entities
|
| 656 |
+
|
| 657 |
+
return doc
|
| 658 |
+
|
| 659 |
+
def parse_xml(self, text):
|
| 660 |
+
output_data = OrderedDict()
|
| 661 |
+
soup = BeautifulSoup(text, 'xml')
|
| 662 |
+
text_blocks_children = supermat_tei_parser.get_children_list(soup, verbose=False)
|
| 663 |
+
|
| 664 |
+
passages = []
|
| 665 |
+
output_data['passages'] = passages
|
| 666 |
+
passages.extend([
|
| 667 |
+
{
|
| 668 |
+
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
|
| 669 |
+
text.parent.name != "ref" or (
|
| 670 |
+
text.parent.name == "ref" and text.parent.attrs[
|
| 671 |
+
'type'] != 'bibr'))),
|
| 672 |
+
"type": "paragraph",
|
| 673 |
+
"section": "<body>",
|
| 674 |
+
"subSection": "<paragraph>",
|
| 675 |
+
"passage_id": str(paragraph_id) + str(sentence_id)
|
| 676 |
+
}
|
| 677 |
+
for paragraph_id, paragraph in enumerate(text_blocks_children) for
|
| 678 |
+
sentence_id, sentence in enumerate(paragraph)
|
| 679 |
+
])
|
| 680 |
+
|
| 681 |
+
return output_data
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
def get_children_list(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
|
| 685 |
+
children = []
|
| 686 |
+
|
| 687 |
+
child_name = "p" if use_paragraphs else "s"
|
| 688 |
+
for child in soup.TEI.children:
|
| 689 |
+
if child.name == 'teiHeader':
|
| 690 |
+
pass
|
| 691 |
+
# children.extend(child.find_all("title", attrs={"level": "a"}, limit=1))
|
| 692 |
+
# children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
|
| 693 |
+
elif child.name == 'text':
|
| 694 |
+
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
|
| 695 |
+
children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
|
| 696 |
+
|
| 697 |
+
if verbose:
|
| 698 |
+
print(str(children))
|
| 699 |
+
|
| 700 |
+
return children
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
def get_children_body(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
|
| 704 |
+
children = []
|
| 705 |
+
child_name = "p" if use_paragraphs else "s"
|
| 706 |
+
for child in soup.TEI.children:
|
| 707 |
+
if child.name == 'text':
|
| 708 |
+
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
|
| 709 |
+
|
| 710 |
+
if verbose:
|
| 711 |
+
print(str(children))
|
| 712 |
+
|
| 713 |
+
return children
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
def get_children_figures(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
|
| 717 |
+
children = []
|
| 718 |
+
child_name = "p" if use_paragraphs else "s"
|
| 719 |
+
for child in soup.TEI.children:
|
| 720 |
+
if child.name == 'text':
|
| 721 |
+
children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
|
| 722 |
+
|
| 723 |
+
if verbose:
|
| 724 |
+
print(str(children))
|
| 725 |
+
|
| 726 |
+
return children
|
streamlit_app.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
-
from datetime import datetime
|
| 3 |
from hashlib import blake2b
|
| 4 |
from tempfile import NamedTemporaryFile
|
| 5 |
|
| 6 |
import dotenv
|
|
|
|
|
|
|
|
|
|
| 7 |
import streamlit as st
|
| 8 |
from langchain.chat_models import PromptLayerChatOpenAI
|
| 9 |
from langchain.embeddings import OpenAIEmbeddings
|
| 10 |
|
| 11 |
from document_qa_engine import DocumentQAEngine
|
| 12 |
|
| 13 |
-
dotenv.load_dotenv(override=True)
|
| 14 |
-
|
| 15 |
if 'rqa' not in st.session_state:
|
| 16 |
st.session_state['rqa'] = None
|
| 17 |
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
from hashlib import blake2b
|
| 3 |
from tempfile import NamedTemporaryFile
|
| 4 |
|
| 5 |
import dotenv
|
| 6 |
+
|
| 7 |
+
dotenv.load_dotenv(override=True)
|
| 8 |
+
|
| 9 |
import streamlit as st
|
| 10 |
from langchain.chat_models import PromptLayerChatOpenAI
|
| 11 |
from langchain.embeddings import OpenAIEmbeddings
|
| 12 |
|
| 13 |
from document_qa_engine import DocumentQAEngine
|
| 14 |
|
|
|
|
|
|
|
| 15 |
if 'rqa' not in st.session_state:
|
| 16 |
st.session_state['rqa'] = None
|
| 17 |
|