Spaces:
Sleeping
Sleeping
File size: 8,942 Bytes
bcb314a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# feature_engineering.py
from __future__ import annotations
import re
from typing import Iterable, List, Tuple, Optional
import numpy as np
import pandas as pd
try:
from sentence_transformers import SentenceTransformer, util as sbert_util
except Exception: # чтобы не падать на установке
SentenceTransformer = None # type: ignore
sbert_util = None # type: ignore
try:
import language_tool_python
except Exception:
language_tool_python = None # type: ignore
_HTML_TAG_RE = re.compile(r"<[^>]+>")
_WS_RE = re.compile(r"\s+")
_PUNCT_RE = re.compile(r"[^\w\s?!.,:;ёЁа-яА-Я-]", re.UNICODE)
# мини-лексиконы под критерии
POLITE_WORDS = {"здравствуйте", "здравствуй", "пожалуйста", "спасибо", "будьте добры"}
APOLOGY_WORDS = {"извините", "простите", "прошу прощения"}
FAMILY_WORDS = {"семья", "сын", "дочь", "дети", "ребёнок", "муж", "жена", "родители"}
SEASON_WORDS = {"зима", "весна", "лето", "осень"}
SHOP_WORDS = {"рассрочка", "гарантия", "характеристики", "документы", "касса"}
YESNO_WORDS = {"да", "нет", "наверное", "возможно"}
def _strip_html(s: str) -> str:
s = _HTML_TAG_RE.sub(" ", s)
s = _WS_RE.sub(" ", s).strip()
return s
def _only_text(s: str) -> str:
s = s.lower()
s = _strip_html(s)
s = _PUNCT_RE.sub(" ", s)
s = _WS_RE.sub(" ", s).strip()
return s
def _split_sentences(s: str) -> List[str]:
# простая сегментация
parts = re.split(r"(?<=[.!?])\s+", s)
return [p.strip() for p in parts if p.strip()]
def _strip_examiner_lines(text: str) -> str:
"""
Убираем вероятные реплики экзаменатора: предложения с '?',
короткие управляющие фразы ("хорошо.", "итак, ...").
"""
sents = _split_sentences(text)
kept = []
for i, sent in enumerate(sents):
low = sent.lower()
if "?" in sent:
continue
if low in {"хорошо.", "отлично.", "прекрасно.", "молодец."}:
continue
if low.startswith(("итак", "следующий", "теперь", "будьте", "ответьте")) and "?" in low:
continue
kept.append(sent)
return " ".join(kept) if kept else text
def _count_matches(words: Iterable[str], tokens: Iterable[str]) -> int:
wset = set(w.lower() for w in words)
return sum(1 for t in tokens if t in wset)
class FeatureExtractor:
"""
Лёгкий экстрактор признаков:
- очистка текста/HTML
- отделение реплик экзаменатора (эвристика)
- семантическая близость (SBERT)
- длины, кол-во предложений, вопросительных/восклицательных и пр.
- индикаторы по заданиям (вежливость, извинение, семья, рассрочка, …)
- (опц.) grammar_error_count через LanguageTool
"""
def __init__(
self,
sbert_model_name: str = "cointegrated/rubert-tiny",
use_grammar: bool = False,
strip_examiner: bool = True,
) -> None:
self.strip_examiner = strip_examiner
# SBERT
self.sbert: Optional[SentenceTransformer]
if SentenceTransformer is None:
self.sbert = None
else:
self.sbert = SentenceTransformer(sbert_model_name)
# Grammar
self.grammar = None
if use_grammar and language_tool_python is not None:
try:
self.grammar = language_tool_python.LanguageTool("ru")
except Exception:
self.grammar = None # безопасно отключаем
# --------- примитивные фичи ----------
def _basic_text_stats(self, text: str) -> Tuple[int, int, int, int, int, float]:
cleaned = _only_text(text)
tokens = cleaned.split()
sents = _split_sentences(text)
qmarks = text.count("?")
emarks = text.count("!")
avg_sent_len = (len(tokens) / max(len(sents), 1)) if tokens else 0.0
return len(tokens), len(sents), qmarks, emarks, len(set(tokens)), float(avg_sent_len)
def _semantic_sim(self, q: str, a: str) -> float:
if not self.sbert or sbert_util is None:
return 0.0
try:
emb_q = self.sbert.encode([q], convert_to_tensor=True, normalize_embeddings=True)
emb_a = self.sbert.encode([a], convert_to_tensor=True, normalize_embeddings=True)
sim = float(sbert_util.cos_sim(emb_q, emb_a)[0][0].cpu().item())
# нормализуем к [0..1] примерно
return max(0.0, min(1.0, (sim + 1.0) / 2.0))
except Exception:
return 0.0
def _grammar_errors(self, text: str) -> int:
if not self.grammar:
return 0
try:
matches = self.grammar.check(text)
return len(matches)
except Exception:
return 0
# --------- фичи под задания ----------
def _question_specific_flags(self, qnum: int, answer_text: str, question_text: str) -> dict:
a_clean = _only_text(answer_text)
a_tokens = a_clean.split()
flags = {
"has_politeness": int(_count_matches(POLITE_WORDS, a_tokens) > 0),
"has_apology": int(_count_matches(APOLOGY_WORDS, a_tokens) > 0),
"has_yesno": int(_count_matches(YESNO_WORDS, a_tokens) > 0),
"mentions_family": int(_count_matches(FAMILY_WORDS, a_tokens) > 0),
"mentions_season": int(_count_matches(SEASON_WORDS, a_tokens) > 0),
"mentions_shop": int(_count_matches(SHOP_WORDS, a_tokens) > 0),
"has_question_mark": int("?" in answer_text),
}
# лёгкие правила по задачам
if qnum == 1: # извиниться + спросить
flags["task_completed_like_q1"] = int(flags["has_apology"] and flags["has_question_mark"])
elif qnum == 2: # диалоговые ответы
flags["task_completed_like_q2"] = int(flags["has_yesno"] or len(a_tokens) > 12)
elif qnum == 3: # магазин: документы/рассрочка/характеристики
flags["task_completed_like_q3"] = int(flags["mentions_shop"] or len(a_tokens) > 25)
elif qnum == 4: # описание картинки + семья/дети
flags["task_completed_like_q4"] = int(flags["mentions_family"] or flags["mentions_season"])
else:
flags["task_completed_like_q1"] = 0
# семантика вопрос-ответ
flags["qa_semantic_sim"] = self._semantic_sim(question_text, answer_text)
return flags
# --------- публичное API ----------
def extract_row_features(self, row: pd.Series) -> dict:
qnum = int(row.get("№ вопроса") or row.get("question_number") or 0)
qtext_raw = str(row.get("Текст вопроса") or row.get("question_text") or "")
atext_raw = str(row.get("Транскрибация") or row.get("transcript") or row.get("answer_text") or "")
qtext = _strip_html(qtext_raw)
atext = _strip_html(atext_raw)
if self.strip_examiner:
atext = _strip_examiner_lines(atext)
tok_len, sent_cnt, qmarks, emarks, uniq, avg_sent = self._basic_text_stats(atext)
grams = self._grammar_errors(atext)
base = {
"question_number": qnum,
"question_text": qtext,
"answer_text": atext,
"tokens_len": tok_len,
"sent_count": sent_cnt,
"q_mark_count": qmarks,
"excl_mark_count": emarks,
"uniq_tokens": uniq,
"avg_sent_len": avg_sent,
"grammar_errors": grams,
"answer_len_chars": len(atext),
}
base.update(self._question_specific_flags(qnum, atext, qtext))
return base
def extract_all_features(self, df: pd.DataFrame) -> pd.DataFrame:
feats = [self.extract_row_features(r) for _, r in df.iterrows()]
out = pd.DataFrame(feats)
# защитимся от NaN и типов
num_cols = [c for c in out.columns if c not in {"question_text", "answer_text"}]
for c in num_cols:
if c not in {"question_text", "answer_text"}:
out[c] = pd.to_numeric(out[c], errors="coerce")
out = out.fillna(
{c: 0 for c in out.columns if c not in {"question_text", "answer_text"}}
)
return out
|