Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,28 @@
|
|
| 1 |
import os
|
| 2 |
-
import subprocess
|
| 3 |
import sys
|
|
|
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
| 6 |
from transformers import AutoTokenizer
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
def setup_environment():
|
| 10 |
if not os.path.exists("skywork-o1-prm-inference"):
|
| 11 |
-
print("Cloning repository...")
|
| 12 |
-
subprocess.run(
|
|
|
|
|
|
|
|
|
|
| 13 |
repo_path = os.path.abspath("skywork-o1-prm-inference")
|
| 14 |
if repo_path not in sys.path:
|
| 15 |
sys.path.append(repo_path)
|
|
@@ -17,23 +30,33 @@ def setup_environment():
|
|
| 17 |
|
| 18 |
setup_environment()
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
from model_utils.prm_model import PRM_MODEL
|
| 22 |
from model_utils.io_utils import prepare_input, prepare_batch_input_for_model, derive_step_rewards
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
model_id = "Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B"
|
|
|
|
|
|
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
|
|
|
| 27 |
model = PRM_MODEL.from_pretrained(model_id).to("cpu").eval()
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
data = {
|
| 33 |
"problem": problem,
|
| 34 |
"response": response
|
| 35 |
}
|
| 36 |
-
# 进行格式化
|
| 37 |
processed_data = [
|
| 38 |
prepare_input(
|
| 39 |
data["problem"],
|
|
@@ -50,12 +73,13 @@ def compute_rewards(problem, response):
|
|
| 50 |
reward_flags,
|
| 51 |
tokenizer.pad_token_id
|
| 52 |
)
|
|
|
|
| 53 |
input_ids = input_ids.to("cpu")
|
| 54 |
attention_mask = attention_mask.to("cpu")
|
| 55 |
if isinstance(reward_flags, torch.Tensor):
|
| 56 |
reward_flags = reward_flags.to("cpu")
|
| 57 |
|
| 58 |
-
#
|
| 59 |
with torch.no_grad():
|
| 60 |
_, _, rewards = model(
|
| 61 |
input_ids=input_ids,
|
|
@@ -67,38 +91,78 @@ def compute_rewards(problem, response):
|
|
| 67 |
step_rewards = derive_step_rewards(rewards, reward_flags)
|
| 68 |
return step_rewards[0]
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
#
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import sys
|
| 3 |
+
import subprocess
|
| 4 |
import torch
|
| 5 |
+
from typing import Union
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
from fastapi import FastAPI
|
| 8 |
+
import uvicorn
|
| 9 |
+
|
| 10 |
+
# gradio相关
|
| 11 |
import gradio as gr
|
| 12 |
+
|
| 13 |
+
# transformers相关
|
| 14 |
from transformers import AutoTokenizer
|
| 15 |
|
| 16 |
+
##############################################################################
|
| 17 |
+
# 1) 若本地(或Space)没有 skywork-o1-prm-inference 目录,则 clone 下来,并将其加入 sys.path
|
| 18 |
+
##############################################################################
|
| 19 |
def setup_environment():
|
| 20 |
if not os.path.exists("skywork-o1-prm-inference"):
|
| 21 |
+
print("Cloning repository skywork-o1-prm-inference...")
|
| 22 |
+
subprocess.run(
|
| 23 |
+
["git", "clone", "https://github.com/SkyworkAI/skywork-o1-prm-inference.git"],
|
| 24 |
+
check=True
|
| 25 |
+
)
|
| 26 |
repo_path = os.path.abspath("skywork-o1-prm-inference")
|
| 27 |
if repo_path not in sys.path:
|
| 28 |
sys.path.append(repo_path)
|
|
|
|
| 30 |
|
| 31 |
setup_environment()
|
| 32 |
|
| 33 |
+
##############################################################################
|
| 34 |
+
# 2) 导入Skywork项目内的模块
|
| 35 |
+
##############################################################################
|
| 36 |
from model_utils.prm_model import PRM_MODEL
|
| 37 |
from model_utils.io_utils import prepare_input, prepare_batch_input_for_model, derive_step_rewards
|
| 38 |
|
| 39 |
+
##############################################################################
|
| 40 |
+
# 3) 加载模型及其相关资源
|
| 41 |
+
##############################################################################
|
| 42 |
+
# 你可根据需求更换 model_id
|
| 43 |
model_id = "Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B"
|
| 44 |
+
|
| 45 |
+
print(f"Loading tokenizer from {model_id} ...")
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 47 |
+
|
| 48 |
+
print(f"Loading model from {model_id} ...")
|
| 49 |
model = PRM_MODEL.from_pretrained(model_id).to("cpu").eval()
|
| 50 |
|
| 51 |
+
##############################################################################
|
| 52 |
+
# 4) 定义推理函数
|
| 53 |
+
##############################################################################
|
| 54 |
+
def compute_rewards(problem: str, response: str):
|
| 55 |
+
"""核心推理函数:将 problem + response 输入模型,输出 step_rewards。"""
|
| 56 |
data = {
|
| 57 |
"problem": problem,
|
| 58 |
"response": response
|
| 59 |
}
|
|
|
|
| 60 |
processed_data = [
|
| 61 |
prepare_input(
|
| 62 |
data["problem"],
|
|
|
|
| 73 |
reward_flags,
|
| 74 |
tokenizer.pad_token_id
|
| 75 |
)
|
| 76 |
+
|
| 77 |
input_ids = input_ids.to("cpu")
|
| 78 |
attention_mask = attention_mask.to("cpu")
|
| 79 |
if isinstance(reward_flags, torch.Tensor):
|
| 80 |
reward_flags = reward_flags.to("cpu")
|
| 81 |
|
| 82 |
+
# 前向推理
|
| 83 |
with torch.no_grad():
|
| 84 |
_, _, rewards = model(
|
| 85 |
input_ids=input_ids,
|
|
|
|
| 91 |
step_rewards = derive_step_rewards(rewards, reward_flags)
|
| 92 |
return step_rewards[0]
|
| 93 |
|
| 94 |
+
##############################################################################
|
| 95 |
+
# 5) 准备FastAPI应用:对外暴露 /api/predict 接口
|
| 96 |
+
##############################################################################
|
| 97 |
+
app = FastAPI(title="PRM Inference Server", description="FastAPI + Gradio App")
|
| 98 |
+
|
| 99 |
+
# 5.1 定义API输入与输出的数据结构
|
| 100 |
+
class InferenceData(BaseModel):
|
| 101 |
+
problem: str
|
| 102 |
+
response: str
|
| 103 |
+
|
| 104 |
+
class InferenceOutput(BaseModel):
|
| 105 |
+
step_rewards: list
|
| 106 |
+
|
| 107 |
+
@app.post("/api/predict", response_model=InferenceOutput)
|
| 108 |
+
def predict(data: InferenceData):
|
| 109 |
+
"""
|
| 110 |
+
直接使用HTTP POST /api/predict,
|
| 111 |
+
body JSON: { "problem": "...", "response": "..." } 即可得到 step_rewards。
|
| 112 |
+
"""
|
| 113 |
+
rewards = compute_rewards(data.problem, data.response)
|
| 114 |
+
return InferenceOutput(step_rewards=rewards)
|
| 115 |
+
|
| 116 |
+
##############################################################################
|
| 117 |
+
# 6) 构建 Gradio 界面,并将其挂载到 /gradio 路径
|
| 118 |
+
##############################################################################
|
| 119 |
+
def build_gradio_interface():
|
| 120 |
+
with gr.Blocks() as demo:
|
| 121 |
+
gr.Markdown(
|
| 122 |
+
"## PRM Reward Calculation\n\n"
|
| 123 |
+
"输入 `Problem` 和 `Response`,点击下方按钮即可获得 step_rewards。"
|
| 124 |
)
|
| 125 |
+
|
| 126 |
+
problem_input = gr.Textbox(
|
| 127 |
+
label="Problem",
|
| 128 |
+
lines=5,
|
| 129 |
+
value=(
|
| 130 |
+
"Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning "
|
| 131 |
+
"and bakes muffins for her friends every day with four. She sells the remainder "
|
| 132 |
+
"at the farmers' market daily for $2 per fresh duck egg. How much in dollars "
|
| 133 |
+
"does she make every day at the farmers' market?"
|
| 134 |
+
)
|
| 135 |
)
|
| 136 |
+
response_input = gr.Textbox(
|
| 137 |
+
label="Response",
|
| 138 |
+
lines=10,
|
| 139 |
+
value=(
|
| 140 |
+
"To determine how much money Janet makes every day at the farmers' market, "
|
| 141 |
+
"we need to follow these steps:\n1. ..."
|
| 142 |
+
)
|
| 143 |
+
)
|
| 144 |
+
output = gr.JSON(label="Step Rewards")
|
| 145 |
|
| 146 |
+
submit_btn = gr.Button("Compute Rewards")
|
| 147 |
+
submit_btn.click(
|
| 148 |
+
fn=compute_rewards,
|
| 149 |
+
inputs=[problem_input, response_input],
|
| 150 |
+
outputs=output
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
return demo
|
| 154 |
+
|
| 155 |
+
demo = build_gradio_interface()
|
| 156 |
+
|
| 157 |
+
# 6.1 挂载Gradio到FastAPI的 /gradio 路径
|
| 158 |
+
app = gr.mount_gradio_app(app, demo, path="/gradio")
|
| 159 |
|
| 160 |
+
##############################################################################
|
| 161 |
+
# 7) 在 main 中用 uvicorn 启动
|
| 162 |
+
##############################################################################
|
| 163 |
+
# 注意:在Hugging Face Spaces中,一般只需要 `python app.py` 即可开始监听。
|
| 164 |
+
# 若Spaces是自动检测并执行 `app.py`,则不一定会执行 `if __name__ == "__main__"` 分支。
|
| 165 |
+
# 因此你只要确保上面定义的 `app` 变量存在即可。
|
| 166 |
+
# 这里写一个可选的 main,方便本地调试。
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|