code
Browse files
app.py
CHANGED
|
@@ -1,13 +1,23 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
)
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
def respond(
|
| 12 |
message,
|
| 13 |
history: list[tuple[str, str]],
|
|
@@ -15,36 +25,54 @@ def respond(
|
|
| 15 |
max_tokens,
|
| 16 |
temperature,
|
| 17 |
top_p,
|
|
|
|
| 18 |
):
|
| 19 |
-
# 构造消息内容
|
| 20 |
messages = [{"role": "system", "content": system_message}]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
temperature=temperature,
|
|
|
|
| 33 |
top_p=top_p,
|
| 34 |
-
|
| 35 |
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
with gr.Blocks() as demo:
|
| 47 |
gr.LoginButton(min_width=250)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
gr.ChatInterface(
|
| 49 |
respond,
|
| 50 |
additional_inputs=[
|
|
@@ -53,13 +81,15 @@ with gr.Blocks() as demo:
|
|
| 53 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 54 |
gr.Slider(
|
| 55 |
minimum=0.1,
|
| 56 |
-
maximum=1.0,
|
| 57 |
-
value=0.95,
|
| 58 |
-
step=0.05,
|
| 59 |
-
label="Top-p (nucleus sampling)"
|
| 60 |
),
|
|
|
|
| 61 |
],
|
| 62 |
)
|
| 63 |
|
|
|
|
| 64 |
if __name__ == "__main__":
|
| 65 |
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
import gradio as gr
|
| 5 |
+
import os
|
| 6 |
+
from threading import Thread
|
| 7 |
+
|
| 8 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 9 |
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
"NyxKrage/Microsoft_Phi-4",
|
| 12 |
+
device_map="cuda",
|
| 13 |
+
torch_dtype="auto",
|
| 14 |
+
trust_remote_code=True,
|
| 15 |
)
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("NyxKrage/Microsoft_Phi-4")
|
| 17 |
|
| 18 |
+
streamer = TextIteratorStreamer(tokenizer)
|
| 19 |
+
|
| 20 |
+
@spaces.GPU
|
| 21 |
def respond(
|
| 22 |
message,
|
| 23 |
history: list[tuple[str, str]],
|
|
|
|
| 25 |
max_tokens,
|
| 26 |
temperature,
|
| 27 |
top_p,
|
| 28 |
+
seed,
|
| 29 |
):
|
|
|
|
| 30 |
messages = [{"role": "system", "content": system_message}]
|
| 31 |
+
|
| 32 |
+
for val in history:
|
| 33 |
+
if val[0]:
|
| 34 |
+
messages.append({"role": "user", "content": val[0]})
|
| 35 |
+
if val[1]:
|
| 36 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 37 |
+
|
| 38 |
messages.append({"role": "user", "content": message})
|
| 39 |
|
| 40 |
+
# Convert messages to the format expected by the model
|
| 41 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
| 42 |
+
|
| 43 |
+
torch.random.manual_seed(seed)
|
| 44 |
+
|
| 45 |
+
generation_kwargs = dict(
|
| 46 |
+
input_ids=input_ids,
|
| 47 |
+
max_new_tokens=max_tokens,
|
| 48 |
temperature=temperature,
|
| 49 |
+
streamer=streamer,
|
| 50 |
top_p=top_p,
|
| 51 |
+
do_sample=True,
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
response = ""
|
| 55 |
+
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
|
| 56 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 57 |
+
thread.start()
|
| 58 |
+
# Print the generated text in real-time
|
| 59 |
+
for new_text in streamer:
|
| 60 |
+
response += new_text
|
| 61 |
+
yield response
|
| 62 |
+
|
| 63 |
with gr.Blocks() as demo:
|
| 64 |
gr.LoginButton(min_width=250)
|
| 65 |
+
"""
|
| 66 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 67 |
+
"""
|
| 68 |
+
gr.Markdown("""
|
| 69 |
+
This is the space I built.
|
| 70 |
+
As of 2025/1/7, this is the first phi-4 space.
|
| 71 |
+
If this helps you, and if you have enough money, can you give me 1$? I am facing a financial crisis.
|
| 72 |
+
If you do this, I will pass on the kindness.
|
| 73 |
+
This is my bank card number:5592921230414708
|
| 74 |
+
Thank you!!
|
| 75 |
+
""")
|
| 76 |
gr.ChatInterface(
|
| 77 |
respond,
|
| 78 |
additional_inputs=[
|
|
|
|
| 81 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 82 |
gr.Slider(
|
| 83 |
minimum=0.1,
|
| 84 |
+
maximum=1.0,
|
| 85 |
+
value=0.95,
|
| 86 |
+
step=0.05,
|
| 87 |
+
label="Top-p (nucleus sampling)",
|
| 88 |
),
|
| 89 |
+
gr.Slider(minimum=0, maximum=20091114, value=42, step=1, label="seed"),
|
| 90 |
],
|
| 91 |
)
|
| 92 |
|
| 93 |
+
|
| 94 |
if __name__ == "__main__":
|
| 95 |
demo.launch()
|
bpp.py
DELETED
|
@@ -1,49 +0,0 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
|
| 4 |
-
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
# PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
|
| 8 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 9 |
-
|
| 10 |
-
torch.random.manual_seed(0)
|
| 11 |
-
|
| 12 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
-
"NyxKrage/Microsoft_Phi-4",
|
| 14 |
-
device_map="cuda",
|
| 15 |
-
torch_dtype="auto",
|
| 16 |
-
trust_remote_code=True,
|
| 17 |
-
)
|
| 18 |
-
tokenizer = AutoTokenizer.from_pretrained("NyxKrage/Microsoft_Phi-4")
|
| 19 |
-
|
| 20 |
-
messages = [
|
| 21 |
-
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 22 |
-
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
| 23 |
-
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
| 24 |
-
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
| 25 |
-
]
|
| 26 |
-
|
| 27 |
-
pipe = pipeline(
|
| 28 |
-
"text-generation",
|
| 29 |
-
model=model,
|
| 30 |
-
tokenizer=tokenizer,
|
| 31 |
-
)
|
| 32 |
-
|
| 33 |
-
streamer = TextIteratorStreamer(tokenizer)
|
| 34 |
-
|
| 35 |
-
generation_args = {
|
| 36 |
-
"max_new_tokens": 500,
|
| 37 |
-
"return_full_text": False,
|
| 38 |
-
"temperature": 0.0,
|
| 39 |
-
"do_sample": False,
|
| 40 |
-
"streamer": streamer,
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
@spaces.GPU
|
| 44 |
-
def tuili():
|
| 45 |
-
model.generate(messages, **generation_args)
|
| 46 |
-
|
| 47 |
-
tuili()
|
| 48 |
-
for new_text in streamer:
|
| 49 |
-
print(new_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|