Spaces:
Build error
Build error
File size: 8,520 Bytes
4ebde41 d65ec59 4ebde41 d65ec59 4ebde41 d65ec59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
---
title: Ubuntu Sandbox Environment
emoji: ๐ฅ๏ธ
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
---
# ๐ฅ๏ธ Ubuntu Sandbox Environment
A comprehensive, AI-accessible Ubuntu development environment hosted on HuggingFace Spaces. Perfect for AI models to build, ship, and create anything!
## ๐ฏ What This Space Provides
This environment enables AI models to:
- **๐จ Build** applications and software in any language
- **๐ Ship** containers, deployments, and applications
- **โจ Create** innovative solutions and projects
- **๐งช Experiment** with new technologies safely
- **๐ Learn** through hands-on development work
## ๐ Key Features
### For AI Models
- **Web-based API** for programmatic access
- **Full Ubuntu command support** via terminal interface
- **Secure sandboxed** environment with proper isolation
- **Persistent file system** for project work
- **Development tools** pre-installed (Docker, Git, Python, Node.js, etc.)
### For Humans
- **Intuitive web interface** with real-time terminal
- **File management system** for creating and editing files
- **System monitoring** dashboard
- **Command history** and session management
- **Quick action buttons** for common operations
## ๐ ๏ธ Pre-installed Development Environment
### Core Tools
- **Python 3.x** with scientific computing (numpy, pandas, matplotlib, etc.)
- **Node.js & npm** for JavaScript development
- **Docker & Docker Compose** for containerization
- **Git** for version control
- **System utilities** (curl, wget, jq, tree, htop, etc.)
### Cloud & DevOps Tools
- **Kubernetes & Helm** for orchestration
- **Terraform** for infrastructure as code
- **AWS CLI, Google Cloud SDK, Azure CLI** for cloud services
- **CI/CD tools** and monitoring utilities
### Programming Languages
- **Python** (with pip, setuptools, wheel)
- **JavaScript/Node.js**
- **Go** with common tools (goimports, golangci-lint)
- **Rust** with Cargo
- **C/C++** with build tools (gcc, g++, make, cmake)
## ๐ค AI Model Integration
### API Endpoints
The environment provides REST API endpoints for seamless AI model integration:
#### Execute Commands
```http
POST /api/execute
Content-Type: application/json
{
"command": "ls -la"
}
```
#### Create Files
```http
POST /api/create
Content-Type: application/json
{
"filename": "hello.py",
"content": "print('Hello from AI!')"
}
```
#### Read Files
```http
POST /api/read
Content-Type: application/json
{
"filename": "hello.py"
}
```
#### List Directories
```http
POST /api/list
Content-Type: application/json
{
"path": "/home/user/workspace"
}
```
### Python Integration Example
```python
import requests
# Execute a command
response = requests.post("https://your-space.hf.space/api/execute",
json={"command": "python3 --version"})
print(response.json())
# Create and run a Python script
requests.post("https://your-space.hf.space/api/create",
json={
"filename": "ai_test.py",
"content": "print('AI created this!')"
})
result = requests.post("https://your-space.hf.space/api/execute",
json={"command": "python3 ai_test.py"})
print(result.json())
```
### JavaScript Integration Example
```javascript
// Execute command
fetch('/api/execute', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({command: 'node --version'})
})
.then(response => response.json())
.then(data => console.log(data));
// Create a Node.js app
fetch('/api/create', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({
filename: 'app.js',
content: 'console.log("Hello from AI!");'
})
});
```
## ๐ฎ How to Use
### 1. Web Interface
- **Terminal Tab**: Type commands and see real-time output
- **File Manager**: Create, edit, and read files through the UI
- **System Info**: Monitor system resources and environment
- **Quick Commands**: One-click access to common operations
### 2. Programmatic Access
- Use the REST API endpoints for automated interaction
- Perfect for AI models to control the environment
- Supports all Ubuntu commands and operations
### 3. Development Workflow
```bash
# Check what's available
system_info
ls -la
# Create a new project
mkdir my_ai_project
cd my_ai_project
echo "# My AI Project" > README.md
# Install dependencies and start coding
pip3 install requests flask
vim main.py
```
## ๐๏ธ Common Use Cases
### 1. AI Software Development
- Create applications in any programming language
- Run tests and debugging
- Build containers and deploy applications
- Manage version control with Git
### 2. Data Science & ML
- Analyze datasets and create visualizations
- Train machine learning models
- Generate reports and documentation
- Experiment with new algorithms
### 3. Web Development
- Build full-stack applications
- Test APIs and web services
- Deploy to cloud platforms
- Monitor application performance
### 4. DevOps & Infrastructure
- Create infrastructure as code
- Set up container orchestration
- Build CI/CD pipelines
- Configure monitoring and logging
### 5. Research & Education
- Academic research projects
- Algorithm development and testing
- Documentation and tutorial creation
- Learning new technologies
## ๐ Security & Safety
### Built-in Protections
- **Isolated container** environment
- **Resource limits** to prevent abuse
- **No root access** for security
- **Session management** and monitoring
- **Command timeouts** (30 seconds)
### Usage Guidelines
- Perfect for experimentation and learning
- Safe environment for AI model testing
- No risk to the underlying system
- Files persist during session
## ๐ Workspace Structure
```
/home/user/workspace/
โโโ projects/ # Your development projects
โโโ data/ # Data files and datasets
โโโ temp/ # Temporary files
โโโ logs/ # Application logs
โโโ tools/ # Additional tools and utilities
โโโ scripts/ # Custom scripts and automation
```
## ๐ Advanced Features
### Pre-configured Development Environment
- **Auto-installed tools** on first run
- **Optimized for AI interaction**
- **Built-in help and documentation**
- **Command history and session management**
### System Monitoring
- Real-time resource usage
- Process monitoring
- Network status
- Storage information
### Integration Ready
- **RESTful API** for programmatic access
- **WebSocket support** for real-time communication
- **JSON-based** request/response format
- **Error handling** and logging
## ๐ก Tips for AI Models
### Best Practices
1. **Start with system checks**: Use `system_info` to understand the environment
2. **Use the API**: Programmatic access is more reliable than web scraping
3. **Monitor resources**: Keep track of memory and CPU usage
4. **Clean up**: Remove temporary files when done
5. **Document work**: Use file system for persistent project state
### Example Workflow
```python
# 1. Check environment
requests.post("/api/execute", json={"command": "system_info"})
# 2. Create project structure
requests.post("/api/create", json={"filename": "README.md", "content": "# My AI Project"})
# 3. Install dependencies
requests.post("/api/execute", json={"command": "pip3 install numpy pandas"})
# 4. Write code
requests.post("/api/create", json={
"filename": "main.py",
"content": "import pandas as pd\\nprint('AI is working!')"
})
# 5. Execute and test
requests.post("/api/execute", json={"command": "python3 main.py"})
```
## ๐ Getting Help
- **Built-in help**: Use the `help` command in the terminal
- **System info**: Run `system_info` to see environment details
- **Command history**: Use `history` to see previous commands
- **File exploration**: Use `ls`, `tree`, or the file manager UI
## ๐ฏ Perfect For
โ
**AI Research and Development**
โ
**Automated Testing and Validation**
โ
**Educational Demonstrations**
โ
**Proof of Concept Development**
โ
**Rapid Prototyping**
โ
**Learning and Experimentation**
โ
**CI/CD Pipeline Integration**
โ
**Multi-language Development**
---
**Ready to enable your AI agents to build, ship, and create anything! ๐**
This environment is specifically designed to be the perfect development playground for AI models, providing all the tools and capabilities needed for comprehensive software development, deployment, and innovation. |