File size: 8,520 Bytes
4ebde41
d65ec59
 
 
 
4ebde41
d65ec59
4ebde41
 
d65ec59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
---
title: Ubuntu Sandbox Environment
emoji: ๐Ÿ–ฅ๏ธ
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
---

# ๐Ÿ–ฅ๏ธ Ubuntu Sandbox Environment

A comprehensive, AI-accessible Ubuntu development environment hosted on HuggingFace Spaces. Perfect for AI models to build, ship, and create anything!

## ๐ŸŽฏ What This Space Provides

This environment enables AI models to:
- **๐Ÿ”จ Build** applications and software in any language
- **๐Ÿš€ Ship** containers, deployments, and applications  
- **โœจ Create** innovative solutions and projects
- **๐Ÿงช Experiment** with new technologies safely
- **๐Ÿ“š Learn** through hands-on development work

## ๐ŸŒŸ Key Features

### For AI Models
- **Web-based API** for programmatic access
- **Full Ubuntu command support** via terminal interface
- **Secure sandboxed** environment with proper isolation
- **Persistent file system** for project work
- **Development tools** pre-installed (Docker, Git, Python, Node.js, etc.)

### For Humans
- **Intuitive web interface** with real-time terminal
- **File management system** for creating and editing files
- **System monitoring** dashboard
- **Command history** and session management
- **Quick action buttons** for common operations

## ๐Ÿ› ๏ธ Pre-installed Development Environment

### Core Tools
- **Python 3.x** with scientific computing (numpy, pandas, matplotlib, etc.)
- **Node.js & npm** for JavaScript development
- **Docker & Docker Compose** for containerization
- **Git** for version control
- **System utilities** (curl, wget, jq, tree, htop, etc.)

### Cloud & DevOps Tools
- **Kubernetes & Helm** for orchestration
- **Terraform** for infrastructure as code
- **AWS CLI, Google Cloud SDK, Azure CLI** for cloud services
- **CI/CD tools** and monitoring utilities

### Programming Languages
- **Python** (with pip, setuptools, wheel)
- **JavaScript/Node.js**
- **Go** with common tools (goimports, golangci-lint)
- **Rust** with Cargo
- **C/C++** with build tools (gcc, g++, make, cmake)

## ๐Ÿค– AI Model Integration

### API Endpoints

The environment provides REST API endpoints for seamless AI model integration:

#### Execute Commands
```http
POST /api/execute
Content-Type: application/json

{
  "command": "ls -la"
}
```

#### Create Files
```http
POST /api/create
Content-Type: application/json

{
  "filename": "hello.py",
  "content": "print('Hello from AI!')"
}
```

#### Read Files
```http
POST /api/read
Content-Type: application/json

{
  "filename": "hello.py"
}
```

#### List Directories
```http
POST /api/list
Content-Type: application/json

{
  "path": "/home/user/workspace"
}
```

### Python Integration Example
```python
import requests

# Execute a command
response = requests.post("https://your-space.hf.space/api/execute", 
                        json={"command": "python3 --version"})
print(response.json())

# Create and run a Python script
requests.post("https://your-space.hf.space/api/create",
              json={
                  "filename": "ai_test.py", 
                  "content": "print('AI created this!')"
              })

result = requests.post("https://your-space.hf.space/api/execute",
                      json={"command": "python3 ai_test.py"})
print(result.json())
```

### JavaScript Integration Example
```javascript
// Execute command
fetch('/api/execute', {
    method: 'POST',
    headers: {'Content-Type': 'application/json'},
    body: JSON.stringify({command: 'node --version'})
})
.then(response => response.json())
.then(data => console.log(data));

// Create a Node.js app
fetch('/api/create', {
    method: 'POST',
    headers: {'Content-Type': 'application/json'},
    body: JSON.stringify({
        filename: 'app.js',
        content: 'console.log("Hello from AI!");'
    })
});
```

## ๐ŸŽฎ How to Use

### 1. Web Interface
- **Terminal Tab**: Type commands and see real-time output
- **File Manager**: Create, edit, and read files through the UI
- **System Info**: Monitor system resources and environment
- **Quick Commands**: One-click access to common operations

### 2. Programmatic Access
- Use the REST API endpoints for automated interaction
- Perfect for AI models to control the environment
- Supports all Ubuntu commands and operations

### 3. Development Workflow
```bash
# Check what's available
system_info
ls -la

# Create a new project
mkdir my_ai_project
cd my_ai_project
echo "# My AI Project" > README.md

# Install dependencies and start coding
pip3 install requests flask
vim main.py
```

## ๐Ÿ—๏ธ Common Use Cases

### 1. AI Software Development
- Create applications in any programming language
- Run tests and debugging
- Build containers and deploy applications
- Manage version control with Git

### 2. Data Science & ML
- Analyze datasets and create visualizations
- Train machine learning models
- Generate reports and documentation
- Experiment with new algorithms

### 3. Web Development
- Build full-stack applications
- Test APIs and web services
- Deploy to cloud platforms
- Monitor application performance

### 4. DevOps & Infrastructure
- Create infrastructure as code
- Set up container orchestration
- Build CI/CD pipelines
- Configure monitoring and logging

### 5. Research & Education
- Academic research projects
- Algorithm development and testing
- Documentation and tutorial creation
- Learning new technologies

## ๐Ÿ”’ Security & Safety

### Built-in Protections
- **Isolated container** environment
- **Resource limits** to prevent abuse
- **No root access** for security
- **Session management** and monitoring
- **Command timeouts** (30 seconds)

### Usage Guidelines
- Perfect for experimentation and learning
- Safe environment for AI model testing
- No risk to the underlying system
- Files persist during session

## ๐Ÿ“ Workspace Structure

```
/home/user/workspace/
โ”œโ”€โ”€ projects/          # Your development projects
โ”œโ”€โ”€ data/             # Data files and datasets  
โ”œโ”€โ”€ temp/             # Temporary files
โ”œโ”€โ”€ logs/             # Application logs
โ”œโ”€โ”€ tools/            # Additional tools and utilities
โ””โ”€โ”€ scripts/          # Custom scripts and automation
```

## ๐Ÿš€ Advanced Features

### Pre-configured Development Environment
- **Auto-installed tools** on first run
- **Optimized for AI interaction**
- **Built-in help and documentation**
- **Command history and session management**

### System Monitoring
- Real-time resource usage
- Process monitoring
- Network status
- Storage information

### Integration Ready
- **RESTful API** for programmatic access
- **WebSocket support** for real-time communication
- **JSON-based** request/response format
- **Error handling** and logging

## ๐Ÿ’ก Tips for AI Models

### Best Practices
1. **Start with system checks**: Use `system_info` to understand the environment
2. **Use the API**: Programmatic access is more reliable than web scraping
3. **Monitor resources**: Keep track of memory and CPU usage
4. **Clean up**: Remove temporary files when done
5. **Document work**: Use file system for persistent project state

### Example Workflow
```python
# 1. Check environment
requests.post("/api/execute", json={"command": "system_info"})

# 2. Create project structure  
requests.post("/api/create", json={"filename": "README.md", "content": "# My AI Project"})

# 3. Install dependencies
requests.post("/api/execute", json={"command": "pip3 install numpy pandas"})

# 4. Write code
requests.post("/api/create", json={
    "filename": "main.py", 
    "content": "import pandas as pd\\nprint('AI is working!')"
})

# 5. Execute and test
requests.post("/api/execute", json={"command": "python3 main.py"})
```

## ๐Ÿ†˜ Getting Help

- **Built-in help**: Use the `help` command in the terminal
- **System info**: Run `system_info` to see environment details
- **Command history**: Use `history` to see previous commands
- **File exploration**: Use `ls`, `tree`, or the file manager UI

## ๐ŸŽฏ Perfect For

โœ… **AI Research and Development**  
โœ… **Automated Testing and Validation**  
โœ… **Educational Demonstrations**  
โœ… **Proof of Concept Development**  
โœ… **Rapid Prototyping**  
โœ… **Learning and Experimentation**  
โœ… **CI/CD Pipeline Integration**  
โœ… **Multi-language Development**

---

**Ready to enable your AI agents to build, ship, and create anything! ๐Ÿš€**

This environment is specifically designed to be the perfect development playground for AI models, providing all the tools and capabilities needed for comprehensive software development, deployment, and innovation.