File size: 6,876 Bytes
6f07e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Ubuntu Sandbox Environment - Deployment Guide

## Quick Start

### 1. Create a New HuggingFace Space
1. Go to [huggingface.co/spaces](https://huggingface.co/spaces)
2. Click "Create new Space"
3. Choose **Docker** as the SDK
4. Name your space (e.g., `ubuntu-sandbox`)
5. Set license (e.g., MIT)
6. Choose hardware (CPU is sufficient, GPU optional)

### 2. Upload Files
Upload the following files to your new space:

```
πŸ“ Your Space Repository
β”œβ”€β”€ app.py              # Main application
β”œβ”€β”€ requirements.txt    # Python dependencies  
β”œβ”€β”€ Dockerfile          # Container configuration
β”œβ”€β”€ config.yaml         # Environment settings
β”œβ”€β”€ README.md          # Documentation
└── USAGE_GUIDE.md     # This file
```

### 3. Deploy
1. After uploading, HuggingFace will automatically build your space
2. The build process takes 5-10 minutes
3. Once built, your space will be available at:
   `https://your-username-ubuntu-sandbox.hf.space`

## Configuration

### Environment Variables
You can set these environment variables in your space settings:

| Variable | Default | Description |
|----------|---------|-------------|
| `INSTALL_TOOLS` | `true` | Install additional development tools |
| `MAX_OUTPUT_LINES` | `1000` | Maximum lines in terminal output |
| `COMMAND_TIMEOUT` | `30` | Timeout for command execution (seconds) |
| `AI_FRIENDLY_MODE` | `true` | Enable AI-specific features |

### Hardware Requirements
- **Minimum**: 2GB RAM, 1 CPU core
- **Recommended**: 4GB RAM, 2 CPU cores  
- **For GPU work**: Add GPU hardware

## Usage Examples

### For AI Models
```python
import requests

# Base URL of your HuggingFace Space
BASE_URL = "https://your-username-ubuntu-sandbox.hf.space"

# Execute a command
response = requests.post(
    f"{BASE_URL}/api/execute",
    json={"command": "python3 -c 'print(\"Hello from AI!\")'"}
)
print(response.json())

# Create a file
requests.post(
    f"{BASE_URL}/api/create",
    json={
        "filename": "ai_project.py",
        "content": "print('AI created this!')"
    }
)

# Run the created file
result = requests.post(
    f"{BASE_URL}/api/execute", 
    json={"command": "python3 ai_project.py"}
)
print(result.json())
```

### For JavaScript/Node.js
```javascript
const BASE_URL = "https://your-username-ubuntu-sandbox.hf.space";

// Execute command
fetch(`${BASE_URL}/api/execute`, {
    method: 'POST',
    headers: {'Content-Type': 'application/json'},
    body: JSON.stringify({command: 'node --version'})
})
.then(response => response.json())
.then(data => console.log(data));

// Create Node.js app
fetch(`${BASE_URL}/api/create`, {
    method: 'POST', 
    headers: {'Content-Type': 'application/json'},
    body: JSON.stringify({
        filename: 'app.js',
        content: 'console.log("AI is coding!");'
    })
});
```

## Advanced Configuration

### Custom Dockerfile
If you need additional system packages, modify the Dockerfile:

```dockerfile
# Add to your Dockerfile after the existing apt-get install
RUN apt-get update && apt-get install -y \
    your-custom-package \
    another-package \
    && apt-get clean \
    && rm -rf /var/lib/apt/lists/*
```

### Custom Python Packages
Add to `requirements.txt`:
```
your-custom-package==1.0.0
another-dependency==2.0.0
```

### Environment Variables
Set in your space's `Settings > Variables` tab:
```
INSTALL_TOOLS=true
AI_FRIENDLY_MODE=true
COMMAND_TIMEOUT=60
```

## Troubleshooting

### Build Issues
- **Package installation fails**: Check if packages exist in Ubuntu 22.04 repos
- **Memory errors**: Increase hardware or reduce package count
- **Build timeout**: Split into smaller Docker layers

### Runtime Issues
- **Commands fail**: Check if packages are installed in Dockerfile
- **API not responding**: Verify app.py is correct and dependencies installed
- **Permission errors**: Ensure proper file permissions in Dockerfile

### Performance Issues
- **Slow response**: Check hardware configuration
- **Memory usage**: Monitor with `htop` command
- **Disk space**: Clean up temporary files

## Security Considerations

### What's Protected
- **Container isolation**: Your space is isolated from other spaces
- **Resource limits**: Prevents resource exhaustion
- **No root access**: Commands run as non-root user
- **Timeout protection**: Long-running commands are terminated

### Best Practices
- **Monitor usage**: Check logs regularly
- **Clean up**: Remove temporary files
- **Backup important work**: Files may be cleaned up
- **Don't store sensitive data**: This is a public environment

## Monitoring and Maintenance

### Check System Health
```bash
# Check system resources
system_info

# Check running processes  
ps aux

# Check disk usage
df -h

# Check memory usage
free -h
```

### View Logs
```bash
# Application logs
tail -f /home/user/workspace/logs/sandbox.log

# System logs
journalctl -f
```

### Maintenance Tasks
```bash
# Clean temporary files
rm -rf /home/user/workspace/temp/*

# Check for old sessions
ps aux | grep bash

# Update package cache
apt update
```

## Integration Examples

### GitHub Actions Integration
```yaml
name: Test in Ubuntu Sandbox
on: [push, pull_request]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v2
    - name: Test in Sandbox
      run: |
        curl -X POST "https://your-space.hf.space/api/execute" \
             -H "Content-Type: application/json" \
             -d '{"command": "python3 -m pytest tests/"}'
```

### CI/CD Pipeline
```python
# Example CI/CD integration
def deploy_to_sandbox():
    # Build and test
    requests.post("/api/execute", 
                  json={"command": "python3 setup.py test"})
    
    # Create Docker image
    requests.post("/api/execute",
                  json={"command": "docker build -t myapp ."})
    
    # Deploy
    requests.post("/api/execute", 
                  json={"command": "docker run -d -p 80:80 myapp"})
```

## Support and Resources

### Getting Help
- **Space Issues**: Check HuggingFace Space logs
- **Technical Questions**: Review the README.md documentation
- **Feature Requests**: Submit through space repository

### Useful Commands
```bash
# Environment information
python3 /home/user/workspace/environment_info.py

# Install additional tools
/home/user/workspace/install_tools.sh

# Check system status
system_info
```

### Community
- **HuggingFace Forum**: [discuss.huggingface.co](https://discuss.huggingface.co)
- **Documentation**: [huggingface.co/docs/spaces](https://huggingface.co/docs/spaces)
- **GitHub**: [github.com/huggingface/gradio](https://github.com/huggingface/gradio)

---

**Ready to deploy your Ubuntu Sandbox Environment! πŸš€**

This guide should help you get your AI-accessible development environment up and running quickly. For specific issues, check the troubleshooting section or refer to the main README.md documentation.