Spaces:
Build error
Build error
| import os | |
| import html | |
| import ftfy | |
| import regex as re | |
| from pathlib import Path | |
| import torch | |
| from functools import lru_cache | |
| import youtokentome as yttm | |
| from tokenizers import Tokenizer | |
| from tokenizers.processors import ByteLevel | |
| # OpenAI simple tokenizer | |
| def default_bpe(bpe_path = "data/bpe_simple_vocab_16e6.txt"): | |
| return os.path.join(os.path.dirname(os.path.abspath(__file__)), bpe_path) | |
| def bytes_to_unicode(): | |
| bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | |
| cs = bs[:] | |
| n = 0 | |
| for b in range(2 ** 8): | |
| if b not in bs: | |
| bs.append(b) | |
| cs.append(2 ** 8 + n) | |
| n += 1 | |
| cs = [chr(n) for n in cs] | |
| return dict(zip(bs, cs)) | |
| def get_pairs(word): | |
| pairs = set() | |
| prev_char = word[0] | |
| for char in word[1:]: | |
| pairs.add((prev_char, char)) | |
| prev_char = char | |
| return pairs | |
| def basic_clean(text): | |
| text = ftfy.fix_text(text) | |
| text = html.unescape(html.unescape(text)) | |
| return text.strip() | |
| def whitespace_clean(text): | |
| text = re.sub(r'\s+', ' ', text) | |
| text = text.strip() | |
| return text | |
| class SimpleTokenizer(object): | |
| def __init__(self, bpe_path = default_bpe()): | |
| self.byte_encoder = bytes_to_unicode() | |
| self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
| merges = Path(bpe_path).read_text(encoding='utf8').split('\n') | |
| merges = merges[1:49152 - 256 - 2 + 1] | |
| merges = [tuple(merge.split()) for merge in merges] | |
| vocab = list(bytes_to_unicode().values()) | |
| vocab = vocab + [v + '</w>' for v in vocab] | |
| for merge in merges: | |
| vocab.append(''.join(merge)) | |
| vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |
| self.vocab_size = 49408 | |
| self.encoder = dict(zip(vocab, range(len(vocab)))) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
| self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} | |
| self.pat = re.compile( | |
| r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", | |
| re.IGNORECASE) | |
| def bpe(self, token): | |
| if token in self.cache: | |
| return self.cache[token] | |
| word = tuple(token[:-1]) + (token[-1] + '</w>',) | |
| pairs = get_pairs(word) | |
| if not pairs: | |
| return token + '</w>' | |
| while True: | |
| bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
| if bigram not in self.bpe_ranks: | |
| break | |
| first, second = bigram | |
| new_word = [] | |
| i = 0 | |
| while i < len(word): | |
| try: | |
| j = word.index(first, i) | |
| new_word.extend(word[i:j]) | |
| i = j | |
| except: | |
| new_word.extend(word[i:]) | |
| break | |
| if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
| new_word.append(first + second) | |
| i += 2 | |
| else: | |
| new_word.append(word[i]) | |
| i += 1 | |
| new_word = tuple(new_word) | |
| word = new_word | |
| if len(word) == 1: | |
| break | |
| else: | |
| pairs = get_pairs(word) | |
| word = ' '.join(word) | |
| self.cache[token] = word | |
| return word | |
| def encode(self, text): | |
| bpe_tokens = [] | |
| text = whitespace_clean(basic_clean(text)).lower() | |
| for token in re.findall(self.pat, text): | |
| token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
| bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
| return bpe_tokens | |
| def decode(self, tokens, remove_start_end = True): | |
| if torch.is_tensor(tokens): | |
| tokens = tokens.tolist() | |
| if remove_start_end: | |
| tokens = [token for token in tokens if token not in (49406, 40407, 0)] | |
| text = ''.join([self.decoder[token] for token in tokens]) | |
| text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') | |
| return text | |
| def tokenize(self, texts, context_length = 256, truncate_text = False): | |
| if isinstance(texts, str): | |
| texts = [texts] | |
| all_tokens = [self.encode(text) for text in texts] | |
| result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
| for i, tokens in enumerate(all_tokens): | |
| if len(tokens) > context_length: | |
| if truncate_text: | |
| tokens = tokens[:context_length] | |
| else: | |
| raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
| result[i, :len(tokens)] = torch.tensor(tokens) | |
| return result | |
| # txt_tokenizer = SimpleTokenizer() | |
| # huggingface tokenizer | |
| class HugTokenizer: | |
| def __init__(self, bpe_path): | |
| bpe_path = Path(default_bpe(bpe_path = bpe_path)) | |
| assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist' | |
| tokenizer = Tokenizer.from_file(str(bpe_path)) | |
| tokenizer.post_processor = ByteLevel(trim_offsets = True) | |
| self.tokenizer = tokenizer | |
| self.vocab_size = tokenizer.get_vocab_size() | |
| def decode(self, tokens): | |
| if torch.is_tensor(tokens): | |
| tokens = tokens.tolist() | |
| tokens = [token for token in tokens if token not in (0,)] | |
| return self.tokenizer.decode(tokens, skip_special_tokens = True) | |
| def encode(self, text): | |
| return self.tokenizer.encode(text).ids | |
| def tokenize(self, texts, context_length = 256, truncate_text = False): | |
| if isinstance(texts, str): | |
| texts = [texts] | |
| all_tokens = [self.encode(text) for text in texts] | |
| result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
| for i, tokens in enumerate(all_tokens): | |
| if len(tokens) > context_length: | |
| if truncate_text: | |
| tokens = tokens[:context_length] | |
| else: | |
| raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
| result[i, :len(tokens)] = torch.tensor(tokens) | |
| return result | |
| txt_tokenizer = HugTokenizer(bpe_path = "data/byte-level-bpe_4k.tokenizer.json") | |
| # yttm tokenizer | |
| class YttmTokenizer: | |
| def __init__(self, bpe_path = None): | |
| bpe_path = Path(default_bpe(bpe_path = bpe_path)) | |
| assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist' | |
| tokenizer = yttm.BPE(model = str(bpe_path)) | |
| self.tokenizer = tokenizer | |
| self.vocab_size = tokenizer.vocab_size() | |
| def decode(self, tokens): | |
| if torch.is_tensor(tokens): | |
| tokens = tokens.tolist() | |
| return self.tokenizer.decode(tokens, ignore_ids = [0]) | |
| def encode(self, texts): | |
| encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID) | |
| return list(map(torch.tensor, encoded)) | |
| def tokenize(self, texts, context_length = 256, truncate_text = False): | |
| if isinstance(texts, str): | |
| texts = [texts] | |
| all_tokens = self.encode(texts) | |
| result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
| for i, tokens in enumerate(all_tokens): | |
| if len(tokens) > context_length: | |
| if truncate_text: | |
| tokens = tokens[:context_length] | |
| else: | |
| raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
| result[i, :len(tokens)] = tokens.detach().clone() | |
| return result | |
| # txt_tokenizer = YttmTokenizer(bpe_path = "data/byte-level-bpe.tokenizer.json") | |