import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image import os import gradio as gr from gradio_client import Client, handle_file import tempfile from typing import Optional, Tuple, Any # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2509", transformer=QwenImageTransformer2DModel.from_pretrained( "linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda' ), torch_dtype=dtype ).to(device) pipe.load_lora_weights( "dx8152/Qwen-Edit-2509-Multiple-angles", weight_name="镜头转换.safetensors", adapter_name="angles" ) pipe.set_adapters(["angles"], adapter_weights=[1.]) pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25) pipe.unload_lora_weights() pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) optimize_pipeline_( pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt" ) MAX_SEED = np.iinfo(np.int32).max def _generate_video_segment( input_image_path: str, output_image_path: str, prompt: str, request: gr.Request ) -> str: """ Generate a single video segment between two frames by calling an external Wan 2.2 image-to-video service hosted on Hugging Face Spaces. This helper function is used internally when the user asks to create a video between the input and output images. Args: input_image_path (str): Path to the starting frame image on disk. output_image_path (str): Path to the ending frame image on disk. prompt (str): Text prompt describing the camera movement / transition. request (gr.Request): Gradio request object, used here to forward the `x-ip-token` header to the downstream Space for authentication/rate limiting. Returns: str: A string returned by the external service, usually a URL or path to the generated video. """ x_ip_token = request.headers['x-ip-token'] video_client = Client( "multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token} ) result = video_client.predict( start_image_pil=handle_file(input_image_path), end_image_pil=handle_file(output_image_path), prompt=prompt, api_name="/generate_video", ) return result[0]["video"] def build_camera_prompt( rotate_deg: float = 0.0, move_forward: float = 0.0, vertical_tilt: float = 0.0, wideangle: bool = False ) -> str: """ Build a camera movement prompt based on the chosen controls. This converts the provided control values into a prompt instruction with the corresponding trigger words for the multiple-angles LoRA. Args: rotate_deg (float, optional): Horizontal rotation in degrees. Positive values rotate left, negative values rotate right. Defaults to 0.0. move_forward (float, optional): Forward movement / zoom factor. Larger values imply moving the camera closer or into a close-up. Defaults to 0.0. vertical_tilt (float, optional): Vertical angle of the camera: - Negative ≈ bird's-eye view - Positive ≈ worm's-eye view Defaults to 0.0. wideangle (bool, optional): Whether to switch to a wide-angle lens style. Defaults to False. Returns: str: A text prompt describing the camera motion. If no controls are active, returns `"no camera movement"`. """ prompt_parts = [] # Rotation if rotate_deg != 0: direction = "left" if rotate_deg > 0 else "right" if direction == "left": prompt_parts.append( f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left." ) else: prompt_parts.append( f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right." ) # Move forward / close-up if move_forward > 5: prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.") elif move_forward >= 1: prompt_parts.append("将镜头向前移动 Move the camera forward.") # Vertical tilt if vertical_tilt <= -1: prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.") elif vertical_tilt >= 1: prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.") # Lens option if wideangle: prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.") final_prompt = " ".join(prompt_parts).strip() return final_prompt if final_prompt else "no camera movement" @spaces.GPU def infer_camera_edit( image: Optional[Image.Image] = None, rotate_deg: float = 0.0, move_forward: float = 0.0, vertical_tilt: float = 0.0, wideangle: bool = False, seed: int = 0, randomize_seed: bool = True, true_guidance_scale: float = 1.0, num_inference_steps: int = 4, height: Optional[int] = None, width: Optional[int] = None, prev_output: Optional[Image.Image] = None, ) -> Tuple[Image.Image, int, str]: """ Edit the camera angles/view of an image with Qwen Image Edit 2509 and dx8152's Qwen-Edit-2509-Multiple-angles LoRA. Applies a camera-style transformation (rotation, zoom, tilt, lens) to an input image. Args: image (PIL.Image.Image | None, optional): Input image to edit. If `None`, the function will instead try to use `prev_output`. At least one of `image` or `prev_output` must be available. Defaults to None. rotate_deg (float, optional): Horizontal rotation in degrees (-90, -45, 0, 45, 90). Positive values rotate to the left, negative to the right. Defaults to 0.0. move_forward (float, optional): Forward movement / zoom factor (0, 5, 10). Higher values move the camera closer; values >5 switch to a close-up style. Defaults to 0.0. vertical_tilt (float, optional): Vertical tilt (-1 to 1). -1 ≈ bird's-eye view, +1 ≈ worm's-eye view. Defaults to 0.0. wideangle (bool, optional): Whether to use a wide-angle lens style. Defaults to False. seed (int, optional): Random seed for the generation. Ignored if `randomize_seed=True`. Defaults to 0. randomize_seed (bool, optional): If True, a random seed (0..MAX_SEED) is chosen per call. Defaults to True. true_guidance_scale (float, optional): CFG / guidance scale controlling prompt adherence. Defaults to 1.0 since the demo is using a distilled transformer for faster inference. num_inference_steps (int, optional): Number of inference steps. Defaults to 4. height (int, optional): Output image height. Must typically be a multiple of 8. If set to 0, the model will infer a size. Defaults to 1024 if none is provided. width (int, optional): Output image width. Must typically be a multiple of 8. If set to 0, the model will infer a size. Defaults to 1024 if none is provided. prev_output (PIL.Image.Image | None, optional): Previous output image to use as input when no new image is uploaded. Defaults to None. Returns: Tuple[PIL.Image.Image, int, str]: - The edited output image. - The actual seed used for generation. - The constructed camera prompt string. """ progress = gr.Progress(track_tqdm=True) prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle) print(f"Generated Prompt: {prompt}") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Choose input image (prefer uploaded, else last output) pil_images = [] if image is not None: if isinstance(image, Image.Image): pil_images.append(image.convert("RGB")) elif hasattr(image, "name"): pil_images.append(Image.open(image.name).convert("RGB")) elif prev_output: pil_images.append(prev_output.convert("RGB")) if len(pil_images) == 0: raise gr.Error("Please upload an image first.") if prompt == "no camera movement": return image, seed, prompt result = pipe( image=pil_images, prompt=prompt, height=height if height != 0 else None, width=width if width != 0 else None, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1, ).images[0] return result, seed, prompt def create_video_between_images( input_image: Optional[Image.Image], output_image: Optional[np.ndarray], prompt: str, request: gr.Request ) -> str: """ Create a short transition video between the input and output images via the Wan 2.2 first-last-frame Space. Args: input_image (PIL.Image.Image | None): Starting frame image (the original / previous view). output_image (numpy.ndarray | None): Ending frame image - the output image with the the edited camera angles. prompt (str): The camera movement prompt used to describe the transition. request (gr.Request): Gradio request object, used to forward the `x-ip-token` header to the video generation app. Returns: str: a path pointing to the generated video. Raises: gr.Error: If either image is missing or if the video generation fails. """ if input_image is None or output_image is None: raise gr.Error("Both input and output images are required to create a video.") try: with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: input_image.save(tmp.name) input_image_path = tmp.name output_pil = Image.fromarray(output_image.astype('uint8')) with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: output_pil.save(tmp.name) output_image_path = tmp.name video_path = _generate_video_segment( input_image_path, output_image_path, prompt if prompt else "Camera movement transformation", request ) return video_path except Exception as e: raise gr.Error(f"Video generation failed: {e}") # --- UI --- css = '''#col-container { max-width: 800px; margin: 0 auto; } .dark .progress-text{color: white !important} #examples{max-width: 800px; margin: 0 auto; }''' def reset_all() -> list: """ Reset all camera control knobs and flags to their default values. This is used by the "Reset" button to set: - rotate_deg = 0 - move_forward = 0 - vertical_tilt = 0 - wideangle = False - is_reset = True Returns: list: A list of values matching the order of the reset outputs: [rotate_deg, move_forward, vertical_tilt, wideangle, is_reset, True] """ return [0, 0, 0, 0, False, True] def end_reset() -> bool: """ Mark the end of a reset cycle. This helper is chained after `reset_all` to set the internal `is_reset` flag back to False, so that live inference can resume. Returns: bool: Always returns False. """ return False def update_dimensions_on_upload( image: Optional[Image.Image] ) -> Tuple[int, int]: """ Compute recommended (width, height) for the output resolution when an image is uploaded while preserveing the aspect ratio. Args: image (PIL.Image.Image | None): The uploaded image. If `None`, defaults to (1024, 1024). Returns: Tuple[int, int]: The new (width, height). """ if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) # Ensure dimensions are multiples of 8 new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control") gr.Markdown(""" Qwen Image Edit 2509 for Camera Control ✨ Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨 """ ) with gr.Row(): with gr.Column(): image = gr.Image(label="Input Image", type="pil") prev_output = gr.Image(value=None, visible=False) is_reset = gr.Checkbox(value=False, visible=False) with gr.Tab("Camera Controls"): rotate_deg = gr.Slider( label="Rotate Right-Left (degrees °)", minimum=-90, maximum=90, step=45, value=0 ) move_forward = gr.Slider( label="Move Forward → Close-Up", minimum=0, maximum=10, step=5, value=0 ) vertical_tilt = gr.Slider( label="Vertical Angle (Bird ↔ Worm)", minimum=-1, maximum=1, step=1, value=0 ) wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False) with gr.Row(): reset_btn = gr.Button("Reset") run_btn = gr.Button("Generate", variant="primary") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0 ) randomize_seed = gr.Checkbox( label="Randomize Seed", value=True ) true_guidance_scale = gr.Slider( label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0 ) num_inference_steps = gr.Slider( label="Inference Steps", minimum=1, maximum=40, step=1, value=4 ) height = gr.Slider( label="Height", minimum=256, maximum=2048, step=8, value=1024 ) width = gr.Slider( label="Width", minimum=256, maximum=2048, step=8, value=1024 ) with gr.Column(): result = gr.Image(label="Output Image", interactive=False) prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False) create_video_button = gr.Button( "🎥 Create Video Between Images", variant="secondary", visible=False ) with gr.Group(visible=False) as video_group: video_output = gr.Video( label="Generated Video", buttons=["download"], autoplay=True ) inputs = [ image, rotate_deg, move_forward, vertical_tilt, wideangle, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output ] outputs = [result, seed, prompt_preview] # Reset behavior reset_btn.click( fn=reset_all, inputs=None, outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], queue=False ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) # Manual generation with video button visibility control def infer_and_show_video_button(*args: Any): """ Wrapper around `infer_camera_edit` that also controls the visibility of the 'Create Video Between Images' button. The first argument in `args` is expected to be the input image; if both input and output images are present, the video button is shown. Args: *args: Positional arguments forwarded directly to `infer_camera_edit`. Returns: tuple: (output_image, seed, prompt, video_button_visibility_update) """ result_img, result_seed, result_prompt = infer_camera_edit(*args) # Show video button if we have both input and output images show_button = args[0] is not None and result_img is not None return result_img, result_seed, result_prompt, gr.update(visible=show_button) run_event = run_btn.click( fn=infer_and_show_video_button, inputs=inputs, outputs=outputs + [create_video_button] ) # Video creation create_video_button.click( fn=lambda: gr.update(visible=True), outputs=[video_group], api_visibility="private" ).then( fn=create_video_between_images, inputs=[image, result, prompt_preview], outputs=[video_output], api_visibility="private" ) # Examples gr.Examples( examples=[ ["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024], ["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024], ["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024], ["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024], ["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024] ], inputs=[ image, rotate_deg, move_forward, vertical_tilt, wideangle, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width ], outputs=outputs, fn=infer_camera_edit, cache_examples=True, cache_mode="lazy", elem_id="examples" ) # Image upload triggers dimension update and control reset image.upload( fn=update_dimensions_on_upload, inputs=[image], outputs=[width, height] ).then( fn=reset_all, inputs=None, outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], queue=False ).then( fn=end_reset, inputs=None, outputs=[is_reset], queue=False ) # Live updates def maybe_infer( is_reset: bool, progress: gr.Progress = gr.Progress(track_tqdm=True), *args: Any ): if is_reset: return gr.update(), gr.update(), gr.update(), gr.update() else: result_img, result_seed, result_prompt = infer_camera_edit(*args) # Show video button if we have both input and output show_button = args[0] is not None and result_img is not None return result_img, result_seed, result_prompt, gr.update(visible=show_button) control_inputs = [ image, rotate_deg, move_forward, vertical_tilt, wideangle, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output ] control_inputs_with_flag = [is_reset] + control_inputs for control in [rotate_deg, move_forward, vertical_tilt]: control.release( fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button] ) wideangle.input( fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button] ) run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) gr.api(infer_camera_edit, api_name="infer_edit_camera_angles") gr.api(create_video_between_images, api_name="create_video_between_images") demo.launch(mcp_server=True, theme=gr.themes.Citrus(), css=css, footer_links=["api", "gradio", "settings"])