Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| import os | |
| from huggingface_hub import hf_hub_download | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from huggingface_hub import hf_hub_download | |
| #from gradio_imageslider import ImageSlider | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| import numpy as np | |
| MULTIMODAL_VITAL_LAYERS = [0, 1, 17, 18] | |
| SINGLE_MODAL_VITAL_LAYERS = list(np.array([28, 53, 54, 56, 25]) - 19) | |
| pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16) | |
| pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| #pipe.enable_lora() | |
| pipe.to(DEVICE, dtype=torch.float16) | |
| def get_examples(): | |
| case = [ | |
| [Image.open("metal.png"),"dragon.png", "a dragon, in 3d melting gold metal",0.9, 0.5, 0, 5, 28, 28, 0, False,False, 2, False, "text/image guided stylzation" ], | |
| [Image.open("doll.png"),"anime.png", "anime illustration",0.9, 0.5, 0, 6, 28, 28, 0, False, False, 2, False,"text/image guided stylzation" ], | |
| [Image.open("doll.png"), "raccoon.png", "raccoon, made of yarn",0.9, 0.5, 0, 4, 28, 28, 0, False, False, 2, False, "local subject edits" ], | |
| [Image.open("cat.jpg"),"parrot.png", "a parrot", 0.9 ,0.5,2, 8,28, 28,0, False , False, 1, False, "local subject edits"], | |
| [Image.open("cat.jpg"),"tiger.png", "a tiger", 0.9 ,0.5,0, 4,8, 8,789385745, False , False, 1, True, "local subject edits"], | |
| [Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"], | |
| ] | |
| return case | |
| def reset_image_input(): | |
| return True | |
| def reset_do_inversion(image_input): | |
| if image_input: | |
| return True | |
| else: | |
| return False | |
| def resize_img(image, max_size=1024): | |
| width, height = image.size | |
| scaling_factor = min(max_size / width, max_size / height) | |
| new_width = int(width * scaling_factor) | |
| new_height = int(height * scaling_factor) | |
| return image.resize((new_width, new_height), Image.LANCZOS) | |
| def image2latent(image, latent_nudging_scalar = 1.15): | |
| image = pipe.image_processor.preprocess(image, height=1024, width=1024,).type(pipe.vae.dtype).to("cuda") | |
| latents = pipe.vae.encode(image)["latent_dist"].mean | |
| latents = (latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor | |
| latents = latents * latent_nudging_scalar | |
| height = pipe.default_sample_size * pipe.vae_scale_factor | |
| width = pipe.default_sample_size * pipe.vae_scale_factor | |
| num_channels_latents = pipe.transformer.config.in_channels // 4 | |
| height = 2 * (height // (pipe.vae_scale_factor * 2)) | |
| width = 2 * (width // (pipe.vae_scale_factor * 2)) | |
| latents = pipe._pack_latents( | |
| latents=latents, | |
| batch_size=1, | |
| num_channels_latents=num_channels_latents, | |
| height=height, | |
| width=width | |
| ) | |
| return latents | |
| def check_hyper_flux_lora(enable_hyper_flux): | |
| if enable_hyper_flux: | |
| pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| return 8, 8 | |
| else: | |
| pipe.unfuse_lora() | |
| return 28, 28 | |
| def convert_string_to_list(s): | |
| return [int(x) for x in s.split(',') if x] | |
| def invert_and_edit(image, | |
| source_prompt, | |
| edit_prompt, | |
| multimodal_layers, | |
| single_layers, | |
| num_inversion_steps, | |
| num_inference_steps, | |
| seed, | |
| randomize_seed, | |
| latent_nudging_scalar, | |
| guidance_scale, | |
| width = 1024, | |
| height = 1024, | |
| inverted_latent_list = None, | |
| do_inversion = True, | |
| image_input = False, | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if image_input and (image is not None): | |
| if do_inversion: | |
| inverted_latent_list = pipe( | |
| source_prompt, | |
| height=1024, | |
| width=1024, | |
| guidance_scale=1, | |
| output_type="pil", | |
| num_inference_steps=num_inversion_steps, | |
| max_sequence_length=512, | |
| latents=image2latent(image, latent_nudging_scalar), | |
| invert_image=True | |
| ) | |
| do_inversion = False | |
| else: | |
| # move to gpu because of zero and gr.states | |
| inverted_latent_list = [tensor.to(DEVICE) for tensor in inverted_latent_list] | |
| num_inference_steps = num_inversion_steps | |
| latents = inverted_latent_list[-1].tile(2, 1, 1) | |
| guidance_scale = [1,3] | |
| image_input = True | |
| else: | |
| latents = torch.randn( | |
| (4096, 64), | |
| generator=torch.Generator(0).manual_seed(0), | |
| dtype=torch.float16, | |
| device=DEVICE, | |
| ).tile(2, 1, 1) | |
| guidance_scale = guidance_scale | |
| image_input = False | |
| try: | |
| multimodal_layers = convert_string_to_list(multimodal_layers) | |
| single_layers = convert_string_to_list(single_layers) | |
| except: | |
| multimodal_layers = MULTIMODAL_VITAL_LAYERS | |
| single_layers = SINGLE_MODAL_VITAL_LAYERS | |
| output = pipe( | |
| [source_prompt, edit_prompt], | |
| height=1024, | |
| width=1024, | |
| guidance_scale=guidance_scale, | |
| output_type="pil", | |
| num_inference_steps=num_inference_steps, | |
| max_sequence_length=512, | |
| latents=latents, | |
| inverted_latent_list=inverted_latent_list, | |
| mm_copy_blocks=multimodal_layers, | |
| single_copy_blocks=single_layers, | |
| ).images | |
| # move back to cpu because of zero and gr.states | |
| if inverted_latent_list is not None: | |
| inverted_latent_list = [tensor.cpu() for tensor in inverted_latent_list] | |
| if image is None: | |
| image = output[0] | |
| return image, output[1], inverted_latent_list, do_inversion, image_input, seed | |
| # UI CSS | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960px; | |
| } | |
| """ | |
| # Create the Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| inverted_latents = gr.State() | |
| do_inversion = gr.State(False) | |
| image_input = gr.State(False) | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# Stable Flow 🌊🖌️ | |
| ### Edit real images with FLUX.1 [dev] | |
| following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Free Image Editing* by Avrahami et al.](https://arxiv.org/pdf/2411.14430) | |
| [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://omriavrahami.com/stable-flow/) [[arxiv](https://arxiv.org/pdf/2411.14430)] | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="pil" | |
| ) | |
| source_prompt = gr.Text( | |
| label="Source Prompt", | |
| max_lines=1, | |
| placeholder="describe the edited output", | |
| ) | |
| edit_prompt = gr.Text( | |
| label="Edit Prompt", | |
| max_lines=1, | |
| placeholder="describe the edited output", | |
| ) | |
| with gr.Row(): | |
| multimodal_layers = gr.Text( | |
| info = "MMDiT attention layers used for editing", | |
| label="vital multimodal layers", | |
| max_lines=1, | |
| value="0, 1, 17, 18", | |
| ) | |
| single_layers = gr.Text( | |
| info = "DiT attention layers used editing", | |
| label="vital single layers", | |
| max_lines=1, | |
| value="9, 34, 35, 37, 6", | |
| ) | |
| with gr.Row(): | |
| enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False) | |
| run_button = gr.Button("Edit", variant="primary") | |
| with gr.Column(): | |
| result = gr.Image(label="Result") | |
| # with gr.Column(): | |
| # with gr.Group(): | |
| # result = ImageSlider(position=0.5) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="num inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=8, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="guidance scale", | |
| minimum=1, | |
| maximum=25, | |
| step=1, | |
| value=3.5, | |
| ) | |
| with gr.Row(): | |
| num_inversion_steps = gr.Slider( | |
| label="num inversion steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=25, | |
| ) | |
| latent_nudging_scalar= gr.Slider( | |
| label="latent nudging scalar", | |
| minimum=1, | |
| maximum=5, | |
| step=0.01, | |
| value=1.15, | |
| ) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| run_button.click( | |
| fn=invert_and_edit, | |
| inputs=[ | |
| input_image, | |
| source_prompt, | |
| edit_prompt, | |
| multimodal_layers, | |
| single_layers, | |
| num_inversion_steps, | |
| num_inference_steps, | |
| seed, | |
| randomize_seed, | |
| latent_nudging_scalar, | |
| guidance_scale, | |
| width, | |
| height, | |
| inverted_latents, | |
| do_inversion, | |
| image_input | |
| ], | |
| outputs=[input_image, result, inverted_latents, do_inversion, image_input, seed], | |
| ) | |
| # gr.Examples( | |
| # examples=get_examples(), | |
| # inputs=[input_image,result, prompt, num_inversion_steps, num_inference_steps, seed, randomize_seed, enable_hyper_flux ], | |
| # outputs=[result], | |
| # ) | |
| input_image.input(fn=reset_image_input, | |
| outputs=[image_input]).then( | |
| fn=reset_do_inversion, | |
| inputs = [image_input], | |
| outputs=[do_inversion] | |
| ) | |
| source_prompt.change( | |
| fn=reset_do_inversion, | |
| inputs = [image_input], | |
| outputs=[do_inversion] | |
| ) | |
| num_inversion_steps.change( | |
| fn=reset_do_inversion, | |
| inputs = [image_input], | |
| outputs=[do_inversion] | |
| ) | |
| seed.change( | |
| fn=reset_do_inversion, | |
| inputs = [image_input], | |
| outputs=[do_inversion] | |
| ) | |
| enable_hyper_flux.change( | |
| fn=check_hyper_flux_lora, | |
| inputs=[enable_hyper_flux], | |
| outputs=[num_inversion_steps, num_inference_steps] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |