Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from huggingface_hub import hf_hub_download
|
|
| 9 |
import torch
|
| 10 |
from diffusers import DiffusionPipeline
|
| 11 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 12 |
|
| 13 |
# Constants
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -26,7 +27,7 @@ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
|
|
| 26 |
# pipe.fuse_lora(lora_scale=0.125)
|
| 27 |
|
| 28 |
#pipe.enable_lora()
|
| 29 |
-
pipe.to(
|
| 30 |
|
| 31 |
def get_examples():
|
| 32 |
case = [
|
|
@@ -38,9 +39,15 @@ def get_examples():
|
|
| 38 |
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"],
|
| 39 |
]
|
| 40 |
return case
|
| 41 |
-
|
| 42 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
return True
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def resize_img(image, max_size=1024):
|
| 46 |
width, height = image.size
|
|
@@ -100,26 +107,43 @@ def invert_and_edit(image,
|
|
| 100 |
height = 1024,
|
| 101 |
inverted_latent_list = None,
|
| 102 |
do_inversion = True,
|
|
|
|
| 103 |
|
| 104 |
):
|
| 105 |
if randomize_seed:
|
| 106 |
seed = random.randint(0, MAX_SEED)
|
| 107 |
-
if
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
else:
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
try:
|
| 125 |
multimodal_layers = convert_string_to_list(multimodal_layers)
|
|
@@ -131,19 +155,20 @@ def invert_and_edit(image,
|
|
| 131 |
[source_prompt, edit_prompt],
|
| 132 |
height=1024,
|
| 133 |
width=1024,
|
| 134 |
-
guidance_scale=
|
| 135 |
output_type="pil",
|
| 136 |
num_inference_steps=num_inference_steps,
|
| 137 |
max_sequence_length=512,
|
| 138 |
-
latents=
|
| 139 |
inverted_latent_list=inverted_latent_list,
|
| 140 |
mm_copy_blocks=multimodal_layers,
|
| 141 |
single_copy_blocks=single_layers,
|
| 142 |
-
).images
|
| 143 |
|
| 144 |
# move back to cpu because of zero and gr.states
|
| 145 |
-
inverted_latent_list
|
| 146 |
-
|
|
|
|
| 147 |
|
| 148 |
# UI CSS
|
| 149 |
css = """
|
|
@@ -157,7 +182,8 @@ css = """
|
|
| 157 |
with gr.Blocks(css=css) as demo:
|
| 158 |
|
| 159 |
inverted_latents = gr.State()
|
| 160 |
-
do_inversion = gr.State(
|
|
|
|
| 161 |
|
| 162 |
with gr.Column(elem_id="col-container"):
|
| 163 |
gr.Markdown(f"""# Stable Flow 🌊🖌️
|
|
@@ -205,6 +231,9 @@ following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Fre
|
|
| 205 |
|
| 206 |
with gr.Column():
|
| 207 |
result = gr.Image(label="Result")
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
with gr.Accordion("Advanced Settings", open=False):
|
| 210 |
|
|
@@ -271,10 +300,11 @@ following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Fre
|
|
| 271 |
width,
|
| 272 |
height,
|
| 273 |
inverted_latents,
|
| 274 |
-
do_inversion
|
|
|
|
| 275 |
|
| 276 |
],
|
| 277 |
-
outputs=[result, inverted_latents, do_inversion, seed],
|
| 278 |
)
|
| 279 |
|
| 280 |
# gr.Examples(
|
|
@@ -284,18 +314,28 @@ following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Fre
|
|
| 284 |
|
| 285 |
# )
|
| 286 |
|
| 287 |
-
input_image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
fn=reset_do_inversion,
|
|
|
|
| 289 |
outputs=[do_inversion]
|
| 290 |
)
|
| 291 |
|
| 292 |
num_inversion_steps.change(
|
| 293 |
fn=reset_do_inversion,
|
|
|
|
| 294 |
outputs=[do_inversion]
|
| 295 |
)
|
| 296 |
|
| 297 |
seed.change(
|
| 298 |
fn=reset_do_inversion,
|
|
|
|
| 299 |
outputs=[do_inversion]
|
| 300 |
)
|
| 301 |
|
|
|
|
| 9 |
import torch
|
| 10 |
from diffusers import DiffusionPipeline
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
+
# from gradio_imageslider import ImageSlider
|
| 13 |
|
| 14 |
# Constants
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 27 |
# pipe.fuse_lora(lora_scale=0.125)
|
| 28 |
|
| 29 |
#pipe.enable_lora()
|
| 30 |
+
pipe.to(DEVICE)
|
| 31 |
|
| 32 |
def get_examples():
|
| 33 |
case = [
|
|
|
|
| 39 |
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"],
|
| 40 |
]
|
| 41 |
return case
|
| 42 |
+
|
| 43 |
+
def reset_image_input():
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
def reset_do_inversion(image_input):
|
| 47 |
+
if image_input:
|
| 48 |
return True
|
| 49 |
+
else:
|
| 50 |
+
return False
|
| 51 |
|
| 52 |
def resize_img(image, max_size=1024):
|
| 53 |
width, height = image.size
|
|
|
|
| 107 |
height = 1024,
|
| 108 |
inverted_latent_list = None,
|
| 109 |
do_inversion = True,
|
| 110 |
+
image_input = False,
|
| 111 |
|
| 112 |
):
|
| 113 |
if randomize_seed:
|
| 114 |
seed = random.randint(0, MAX_SEED)
|
| 115 |
+
if image_input:
|
| 116 |
+
if do_inversion:
|
| 117 |
+
inverted_latent_list = pipe(
|
| 118 |
+
source_prompt,
|
| 119 |
+
height=1024,
|
| 120 |
+
width=1024,
|
| 121 |
+
guidance_scale=1,
|
| 122 |
+
output_type="pil",
|
| 123 |
+
num_inference_steps=num_inversion_steps,
|
| 124 |
+
max_sequence_length=512,
|
| 125 |
+
latents=image2latent(image),
|
| 126 |
+
invert_image=True
|
| 127 |
+
)
|
| 128 |
+
do_inversion = False
|
| 129 |
+
|
| 130 |
+
else:
|
| 131 |
+
# move to gpu because of zero and gr.states
|
| 132 |
+
inverted_latent_list = [tensor.to(DEVICE) for tensor in inverted_latent_list]
|
| 133 |
+
|
| 134 |
+
latents = inverted_latent_list[-1].tile(2, 1, 1)
|
| 135 |
+
guidance_scale = [1,3]
|
| 136 |
+
image_input = True
|
| 137 |
else:
|
| 138 |
+
latents = torch.randn(
|
| 139 |
+
(4096, 64),
|
| 140 |
+
generator=torch.Generator(0).manual_seed(0),
|
| 141 |
+
dtype=torch.float16,
|
| 142 |
+
device=DEVICE,
|
| 143 |
+
).tile(2, 1, 1)
|
| 144 |
+
guidance_scale = 3.5
|
| 145 |
+
image_input = False
|
| 146 |
+
|
| 147 |
|
| 148 |
try:
|
| 149 |
multimodal_layers = convert_string_to_list(multimodal_layers)
|
|
|
|
| 155 |
[source_prompt, edit_prompt],
|
| 156 |
height=1024,
|
| 157 |
width=1024,
|
| 158 |
+
guidance_scale=guidance_scale,
|
| 159 |
output_type="pil",
|
| 160 |
num_inference_steps=num_inference_steps,
|
| 161 |
max_sequence_length=512,
|
| 162 |
+
latents=latents,
|
| 163 |
inverted_latent_list=inverted_latent_list,
|
| 164 |
mm_copy_blocks=multimodal_layers,
|
| 165 |
single_copy_blocks=single_layers,
|
| 166 |
+
).images
|
| 167 |
|
| 168 |
# move back to cpu because of zero and gr.states
|
| 169 |
+
if inverted_latent_list is not None:
|
| 170 |
+
inverted_latent_list = [tensor.cpu() for tensor in inverted_latent_list]
|
| 171 |
+
return output[0], output[1], inverted_latent_list, do_inversion, image_input, seed
|
| 172 |
|
| 173 |
# UI CSS
|
| 174 |
css = """
|
|
|
|
| 182 |
with gr.Blocks(css=css) as demo:
|
| 183 |
|
| 184 |
inverted_latents = gr.State()
|
| 185 |
+
do_inversion = gr.State(False)
|
| 186 |
+
image_input = gr.State(False)
|
| 187 |
|
| 188 |
with gr.Column(elem_id="col-container"):
|
| 189 |
gr.Markdown(f"""# Stable Flow 🌊🖌️
|
|
|
|
| 231 |
|
| 232 |
with gr.Column():
|
| 233 |
result = gr.Image(label="Result")
|
| 234 |
+
# with gr.Column():
|
| 235 |
+
# with gr.Group():
|
| 236 |
+
# result = ImageSlider(position=0.5)
|
| 237 |
|
| 238 |
with gr.Accordion("Advanced Settings", open=False):
|
| 239 |
|
|
|
|
| 300 |
width,
|
| 301 |
height,
|
| 302 |
inverted_latents,
|
| 303 |
+
do_inversion,
|
| 304 |
+
image_input
|
| 305 |
|
| 306 |
],
|
| 307 |
+
outputs=[input_image, result, inverted_latents, do_inversion, image_input, seed],
|
| 308 |
)
|
| 309 |
|
| 310 |
# gr.Examples(
|
|
|
|
| 314 |
|
| 315 |
# )
|
| 316 |
|
| 317 |
+
input_image.input(fn=reset_image_input,
|
| 318 |
+
outputs=[image_input]).then(
|
| 319 |
+
fn=reset_do_inversion,
|
| 320 |
+
inputs = [image_input],
|
| 321 |
+
outputs=[do_inversion]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
source_prompt.change(
|
| 325 |
fn=reset_do_inversion,
|
| 326 |
+
inputs = [image_input],
|
| 327 |
outputs=[do_inversion]
|
| 328 |
)
|
| 329 |
|
| 330 |
num_inversion_steps.change(
|
| 331 |
fn=reset_do_inversion,
|
| 332 |
+
inputs = [image_input],
|
| 333 |
outputs=[do_inversion]
|
| 334 |
)
|
| 335 |
|
| 336 |
seed.change(
|
| 337 |
fn=reset_do_inversion,
|
| 338 |
+
inputs = [image_input],
|
| 339 |
outputs=[do_inversion]
|
| 340 |
)
|
| 341 |
|