Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from sae_auto_interp.sae import Sae | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| CITATION_BUTTON_TEXT = """ | |
| @misc{zhang2024largemultimodalmodelsinterpret, | |
| title={Large Multi-modal Models Can Interpret Features in Large Multi-modal Models}, | |
| author={Kaichen Zhang and Yifei Shen and Bo Li and Ziwei Liu}, | |
| year={2024}, | |
| eprint={2411.14982}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CV}, | |
| url={https://arxiv.org/abs/2411.14982}, | |
| } | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # Large Multi-modal Models Can Interpret Features in Large Multi-modal Models | |
| π [ArXiv Paper](https://arxiv.org/abs/2411.14982) | π [LMMs-Lab Homepage](https://lmms-lab.framer.ai) | π€ [Huggingface Collections](https://huggingface.co/collections/lmms-lab/llava-sae-674026e4e7bc8c29c70bc3a3) | |
| """ | |
| ) | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("Visualization of Activations", elem_id="visualization", id=0): | |
| image = gr.Image() | |
| with gr.TabItem("Steering Model", elem_id="steering", id=2): | |
| chatbot = gr.Chatbot() | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| gr.Markdown("```bib\n" + CITATION_BUTTON_TEXT + "\n```") | |
| if __name__ == "__main__": | |
| demo.launch() | |