Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch Siglip model.""" | |
| import math | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import Any, Optional, Tuple, Union, List | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn.init import _calculate_fan_in_and_fan_out | |
| from transformers.activations import ACT2FN | |
| # from ...modeling_attn_mask_utils import _prepare_4d_attention_mask | |
| from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| ModelOutput, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig | |
| logger = logging.get_logger(__name__) | |
| # _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" | |
| # SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| # "google/siglip-base-patch16-224", | |
| # # See all SigLIP models at https://huggingface.co/models?filter=siglip | |
| # ] | |
| def _trunc_normal_(tensor, mean, std, a, b): | |
| # Cut & paste from PyTorch official master until it's in a few official releases - RW | |
| # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn( | |
| "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
| "The distribution of values may be incorrect.", | |
| stacklevel=2, | |
| ) | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| l = norm_cdf((a - mean) / std) | |
| u = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [l, u], then translate to | |
| # [2l-1, 2u-1]. | |
| tensor.uniform_(2 * l - 1, 2 * u - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.0)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| def trunc_normal_tf_( | |
| tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | |
| ) -> torch.Tensor: | |
| """Fills the input Tensor with values drawn from a truncated | |
| normal distribution. The values are effectively drawn from the | |
| normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | |
| with values outside :math:`[a, b]` redrawn until they are within | |
| the bounds. The method used for generating the random values works | |
| best when :math:`a \\leq \text{mean} \\leq b`. | |
| NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | |
| bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | |
| and the result is subsquently scaled and shifted by the mean and std args. | |
| Args: | |
| tensor: an n-dimensional `torch.Tensor` | |
| mean: the mean of the normal distribution | |
| std: the standard deviation of the normal distribution | |
| a: the minimum cutoff value | |
| b: the maximum cutoff value | |
| """ | |
| with torch.no_grad(): | |
| _trunc_normal_(tensor, 0, 1.0, a, b) | |
| tensor.mul_(std).add_(mean) | |
| def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | |
| fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |
| if mode == "fan_in": | |
| denom = fan_in | |
| elif mode == "fan_out": | |
| denom = fan_out | |
| elif mode == "fan_avg": | |
| denom = (fan_in + fan_out) / 2 | |
| variance = scale / denom | |
| if distribution == "truncated_normal": | |
| # constant is stddev of standard normal truncated to (-2, 2) | |
| trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | |
| elif distribution == "normal": | |
| with torch.no_grad(): | |
| tensor.normal_(std=math.sqrt(variance)) | |
| elif distribution == "uniform": | |
| bound = math.sqrt(3 * variance) | |
| with torch.no_grad(): | |
| tensor.uniform_(-bound, bound) | |
| else: | |
| raise ValueError(f"invalid distribution {distribution}") | |
| def lecun_normal_(tensor): | |
| variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | |
| def default_flax_embed_init(tensor): | |
| variance_scaling_(tensor, mode="fan_in", distribution="normal") | |
| # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip | |
| class SiglipVisionModelOutput(ModelOutput): | |
| """ | |
| Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
| Args: | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The image embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip | |
| class SiglipTextModelOutput(ModelOutput): | |
| """ | |
| Base class for text model's outputs that also contains a pooling of the last hidden states. | |
| Args: | |
| text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The text embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| text_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip | |
| class SiglipOutput(ModelOutput): | |
| """ | |
| Args: | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
| Contrastive loss for image-text similarity. | |
| logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
| The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
| similarity scores. | |
| logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
| The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
| similarity scores. | |
| text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
| The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. | |
| image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
| The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. | |
| text_model_output(`BaseModelOutputWithPooling`): | |
| The output of the [`SiglipTextModel`]. | |
| vision_model_output(`BaseModelOutputWithPooling`): | |
| The output of the [`SiglipVisionModel`]. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| logits_per_image: torch.FloatTensor = None | |
| logits_per_text: torch.FloatTensor = None | |
| text_embeds: torch.FloatTensor = None | |
| image_embeds: torch.FloatTensor = None | |
| text_model_output: BaseModelOutputWithPooling = None | |
| vision_model_output: BaseModelOutputWithPooling = None | |
| def to_tuple(self) -> Tuple[Any]: | |
| return tuple( | |
| self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
| for k in self.keys() | |
| ) | |
| class SiglipVisionEmbeddings(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.patch_embedding = nn.Conv2d( | |
| in_channels=config.num_channels, | |
| out_channels=self.embed_dim, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| padding="valid", | |
| ) | |
| if config.num_mask_channels: | |
| # Mask should have the same output shape to be added. | |
| # Currently we have bias in this embedding (so that mask vs no mask are different). | |
| self.mask_patch_embedding = nn.Conv2d( | |
| in_channels=config.num_mask_channels, | |
| out_channels=self.embed_dim, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| padding="valid" | |
| ) | |
| self.mask_patch_embedding.use_zero_init = True | |
| else: | |
| self.mask_patch_embedding = None | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.num_positions = self.num_patches | |
| self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
| self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) | |
| def forward(self, pixel_values: torch.FloatTensor, additional_position_embedding: Optional[torch.Tensor] = None, additional_embedding_mode: Optional[str] = None) -> torch.Tensor: | |
| if self.mask_patch_embedding is None: | |
| patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] | |
| else: | |
| # Comment this out if you want to encode both images without mask channel and with mask channel. | |
| # However, if different samples in the batch have different number of channels, this is not applicable. | |
| # assert pixel_values.size(1) == 4, f"Input does not have a mask channel, shape: {pixel_values.shape}" | |
| patch_embeds = self.patch_embedding(pixel_values[:, :3, ...]) # shape = [*, width, grid, grid] | |
| if pixel_values.size(1) == 4: | |
| patch_embeds = patch_embeds + self.mask_patch_embedding(pixel_values[:, 3:4, ...]) | |
| embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
| if additional_position_embedding is not None: | |
| if additional_embedding_mode == "add": | |
| embeddings = embeddings + self.position_embedding(self.position_ids) | |
| embeddings = embeddings + additional_position_embedding | |
| elif additional_embedding_mode == "replace": | |
| # The original positional embedding is not used (multiplied by zero to ensure all parameters are used to be safe) | |
| embeddings = embeddings + self.position_embedding(self.position_ids) * 0. | |
| embeddings = embeddings + additional_position_embedding | |
| else: | |
| raise ValueError(f"additional_embedding_mode should be either 'add' or 'replace', got {additional_embedding_mode}") | |
| else: | |
| # Without additional position embedding | |
| embeddings = embeddings + self.position_embedding(self.position_ids) | |
| # print("No additional position embedding") | |
| return embeddings | |
| # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip | |
| class SiglipTextEmbeddings(nn.Module): | |
| def __init__(self, config: SiglipTextConfig): | |
| super().__init__() | |
| embed_dim = config.hidden_size | |
| self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) | |
| self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.register_buffer( | |
| "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
| ) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| ) -> torch.Tensor: | |
| seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, :seq_length] | |
| if inputs_embeds is None: | |
| inputs_embeds = self.token_embedding(input_ids) | |
| position_embeddings = self.position_embedding(position_ids) | |
| embeddings = inputs_embeds + position_embeddings | |
| return embeddings | |
| class SiglipAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale = self.head_dim**-0.5 | |
| self.dropout = config.attention_dropout | |
| self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| batch_size, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| k_v_seq_len = key_states.shape[-2] | |
| attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
| if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights + attention_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights | |
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip | |
| class SiglipMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip | |
| class SiglipEncoderLayer(nn.Module): | |
| def __init__(self, config: SiglipConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = SiglipAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = SiglipMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| # Ignore copy | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
| attention_mask (`torch.FloatTensor`): | |
| Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
| output_attentions (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = residual + hidden_states | |
| residual = hidden_states | |
| hidden_states = self.layer_norm2(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class SiglipPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = SiglipConfig | |
| base_model_prefix = "siglip" | |
| supports_gradient_checkpointing = True | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, SiglipVisionEmbeddings): | |
| width = ( | |
| self.config.vision_config.hidden_size | |
| if isinstance(self.config, SiglipConfig) | |
| else self.config.hidden_size | |
| ) | |
| nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) | |
| elif isinstance(module, nn.Embedding): | |
| default_flax_embed_init(module.weight) | |
| elif isinstance(module, SiglipAttention): | |
| nn.init.xavier_uniform_(module.q_proj.weight) | |
| nn.init.xavier_uniform_(module.k_proj.weight) | |
| nn.init.xavier_uniform_(module.v_proj.weight) | |
| nn.init.xavier_uniform_(module.out_proj.weight) | |
| nn.init.zeros_(module.q_proj.bias) | |
| nn.init.zeros_(module.k_proj.bias) | |
| nn.init.zeros_(module.v_proj.bias) | |
| nn.init.zeros_(module.out_proj.bias) | |
| elif isinstance(module, SiglipMLP): | |
| nn.init.xavier_uniform_(module.fc1.weight) | |
| nn.init.xavier_uniform_(module.fc2.weight) | |
| nn.init.normal_(module.fc1.bias, std=1e-6) | |
| nn.init.normal_(module.fc2.bias, std=1e-6) | |
| elif isinstance(module, SiglipMultiheadAttentionPoolingHead): | |
| nn.init.xavier_uniform_(module.probe.data) | |
| nn.init.xavier_uniform_(module.attention.in_proj_weight.data) | |
| nn.init.zeros_(module.attention.in_proj_bias.data) | |
| elif isinstance(module, SiglipModel): | |
| logit_scale_init = torch.log(torch.tensor(1.0)) | |
| module.logit_scale.data.fill_(logit_scale_init) | |
| module.logit_bias.data.zero_() | |
| elif isinstance(module, nn.Conv2d) and getattr(module, "use_zero_init", False): | |
| import deepspeed | |
| param_list = [module.weight] | |
| if module.bias is not None: | |
| param_list += [module.bias] | |
| # This is used in mask patch embedding | |
| if is_deepspeed_zero3_enabled(): | |
| with deepspeed.zero.GatheredParameters(param_list, modifier_rank=0): | |
| for param in param_list: | |
| nn.init.zeros_(param) | |
| else: | |
| for param in param_list: | |
| nn.init.zeros_(param) | |
| elif isinstance(module, (nn.Linear, nn.Conv2d)): | |
| lecun_normal_(module.weight) | |
| if module.bias is not None: | |
| nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| SIGLIP_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`SiglipConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| SIGLIP_TEXT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| SIGLIP_VISION_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| SIGLIP_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| return_loss (`bool`, *optional*): | |
| Whether or not to return the contrastive loss. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip | |
| class SiglipEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`SiglipEncoderLayer`]. | |
| Args: | |
| config: SiglipConfig | |
| """ | |
| def __init__(self, config: SiglipConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| # Ignore copy | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| context_provider_layers: Optional[nn.ModuleList] = None, | |
| contexts: Optional[List[torch.Tensor]] = None, | |
| cross_attention_mask: Optional[torch.Tensor] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| context_provider_layers (nn.ModuleList): ModuleList of context provider layers. | |
| contexts: List of torch.Tensor for context (for KV in cross-attention). | |
| cross_attention_mask (`torch.Tensor` of shape `(batch_size, q_sequence_length, kv_sequence_length)`, *optional*): mask for cross-attention. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for layer_index, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| encoder_layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| output_attentions, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if context_provider_layers: | |
| # Right now contexts is passed as the encoder_hidden_states (the output hidden_states of the context ViT). | |
| context_provider_layer = context_provider_layers[layer_index] | |
| if context_provider_layer is not None: | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| context_provider_layer.__call__, | |
| hidden_states, | |
| contexts, | |
| cross_attention_mask, | |
| output_attentions, | |
| ) | |
| else: | |
| layer_outputs = context_provider_layer( | |
| hidden_states, | |
| contexts, | |
| cross_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| class SiglipTextTransformer(nn.Module): | |
| def __init__(self, config: SiglipTextConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = SiglipTextEmbeddings(config) | |
| self.encoder = SiglipEncoder(config) | |
| self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.head = nn.Linear(embed_dim, embed_dim) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **kwargs, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is None: | |
| raise ValueError("You have to specify input_ids") | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) | |
| # note: SigLIP's text model does not use a causal mask, unlike the original CLIP model. | |
| # expand attention_mask | |
| # if attention_mask is not None: | |
| # # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] | |
| # attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| **kwargs, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.final_layer_norm(last_hidden_state) | |
| # Assuming "sticky" EOS tokenization, last token is always EOS. | |
| pooled_output = last_hidden_state[:, -1, :] | |
| pooled_output = self.head(pooled_output) | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class SiglipTextModel(SiglipPreTrainedModel): | |
| config_class = SiglipTextConfig | |
| _no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"] | |
| def __init__(self, config: SiglipTextConfig): | |
| super().__init__(config) | |
| self.text_model = SiglipTextTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.text_model.embeddings.token_embedding | |
| def set_input_embeddings(self, value): | |
| self.text_model.embeddings.token_embedding = value | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, SiglipTextModel | |
| >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") | |
| >>> # important: make sure to set padding="max_length" as that's how the model was trained | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled (EOS token) states | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| return self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class SiglipVisionTransformer(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = SiglipVisionEmbeddings(config) | |
| self.encoder = SiglipEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.head = SiglipMultiheadAttentionPoolingHead(config) | |
| def forward( | |
| self, | |
| pixel_values, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **kwargs | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| hidden_states = self.embeddings(pixel_values) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| **kwargs | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.post_layernorm(last_hidden_state) | |
| pooled_output = self.head(last_hidden_state) | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class SiglipMultiheadAttentionPoolingHead(nn.Module): | |
| """Multihead Attention Pooling.""" | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
| self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) | |
| self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.mlp = SiglipMLP(config) | |
| def forward(self, hidden_state): | |
| batch_size = hidden_state.shape[0] | |
| probe = self.probe.repeat(batch_size, 1, 1) | |
| hidden_state = self.attention(probe, hidden_state, hidden_state)[0] | |
| residual = hidden_state | |
| hidden_state = self.layernorm(hidden_state) | |
| hidden_state = residual + self.mlp(hidden_state) | |
| return hidden_state[:, 0] | |
| class SiglipVisionModel(SiglipPreTrainedModel): | |
| config_class = SiglipVisionConfig | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__(config) | |
| self.vision_model = SiglipVisionTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **kwargs | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, SiglipVisionModel | |
| >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") | |
| >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled features | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| return self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| **kwargs | |
| ) | |
| class SiglipModel(SiglipPreTrainedModel): | |
| config_class = SiglipConfig | |
| def __init__(self, config: SiglipConfig): | |
| super().__init__(config) | |
| if not isinstance(config.text_config, SiglipTextConfig): | |
| raise ValueError( | |
| "config.text_config is expected to be of type SiglipTextConfig but is of type" | |
| f" {type(config.text_config)}." | |
| ) | |
| if not isinstance(config.vision_config, SiglipVisionConfig): | |
| raise ValueError( | |
| "config.vision_config is expected to be of type SiglipVisionConfig but is of type" | |
| f" {type(config.vision_config)}." | |
| ) | |
| text_config = config.text_config | |
| vision_config = config.vision_config | |
| self.text_model = SiglipTextTransformer(text_config) | |
| self.vision_model = SiglipVisionTransformer(vision_config) | |
| self.logit_scale = nn.Parameter(torch.randn(1)) | |
| self.logit_bias = nn.Parameter(torch.randn(1)) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_text_features( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
| applying the projection layer to the pooled output of [`SiglipTextModel`]. | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, AutoModel | |
| >>> import torch | |
| >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") | |
| >>> # important: make sure to set padding="max_length" as that's how the model was trained | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") | |
| >>> with torch.no_grad(): | |
| ... text_features = model.get_text_features(**inputs) | |
| ```""" | |
| # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = text_outputs[1] | |
| return pooled_output | |
| def get_image_features( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
| applying the projection layer to the pooled output of [`SiglipVisionModel`]. | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, AutoModel | |
| >>> import torch | |
| >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") | |
| >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> with torch.no_grad(): | |
| ... image_features = model.get_image_features(**inputs) | |
| ```""" | |
| # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = vision_outputs[1] | |
| return pooled_output | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| return_loss: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SiglipOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, AutoModel | |
| >>> import torch | |
| >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") | |
| >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] | |
| >>> inputs = processor(text=texts, images=image, return_tensors="pt") | |
| >>> with torch.no_grad(): | |
| ... outputs = model(**inputs) | |
| >>> logits_per_image = outputs.logits_per_image | |
| >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities | |
| >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") | |
| 31.9% that image 0 is 'a photo of 2 cats' | |
| ```""" | |
| # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[1] | |
| text_embeds = text_outputs[1] | |
| # normalized features | |
| image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
| text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
| # cosine similarity as logits | |
| logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias | |
| logits_per_image = logits_per_text.t() | |
| loss = None | |
| if return_loss: | |
| raise NotImplementedError("SigLIP loss to be implemented") | |
| if not return_dict: | |
| output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) | |
| return ((loss,) + output) if loss is not None else output | |
| return SiglipOutput( | |
| loss=loss, | |
| logits_per_image=logits_per_image, | |
| logits_per_text=logits_per_text, | |
| text_embeds=text_embeds, | |
| image_embeds=image_embeds, | |
| text_model_output=text_outputs, | |
| vision_model_output=vision_outputs, | |
| ) | |