Spaces:
Build error
Build error
| import streamlit as st | |
| from topics import TopicModelling | |
| import mdforest | |
| import utils | |
| st.title("Drop the first document") | |
| file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first") | |
| st.title("Drop the second document") | |
| file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second") | |
| topics = {} | |
| results = {} | |
| if file1 is not None and file2 is not None: | |
| input_text1 = file1.read().decode("utf-8") | |
| input_text2 = file2.read().decode("utf-8") | |
| cleaned_text1 = mdforest.clean_markdown(input_text1) | |
| cleaned_text2 = mdforest.clean_markdown(input_text2) | |
| st.title("Generating insights") | |
| with st.spinner('Generating insights...'): | |
| insight1 = TopicModelling(cleaned_text1) | |
| insight2 = TopicModelling(cleaned_text2) | |
| keywords1, concepts1 = insight1.generate_topics() | |
| topics['insight1'] = [keywords1, concepts1] | |
| keywords2, concepts2 = insight2.generate_topics() | |
| topics['insight2'] = [keywords2, concepts2] | |
| st.success('Done!') | |
| with st.spinner("Flux capacitor is fluxing..."): | |
| embedder = utils.load_model() | |
| clutered = utils.cluster_based_on_topics(embedder, cleaned_text1, cleaned_text2) | |
| print(clutered) | |
| st.success("Done!") | |
| with st.spinner("Polishing up"): | |
| results = utils.generate_insights(topics, file1.name, file2.name, cleaned_text1, cleaned_text2, clutered) | |
| st.write(results) | |
| st.success("Done!") | |