Spaces:
Runtime error
Runtime error
update code
Browse files- app.py +38 -35
- languages.json β utils/languages.json +3 -3
- utils/table_contents.md +9 -0
app.py
CHANGED
|
@@ -2,19 +2,23 @@ import json
|
|
| 2 |
import requests
|
| 3 |
import streamlit as st
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
st.title("The Stack Bot π€")
|
| 6 |
|
| 7 |
intro = """
|
| 8 |
The Stack Bot is a tool to help you get started with tools developed in [BigCode](https://huggingface.co/bigcode),
|
| 9 |
such as [The Stack](https://huggingface.co/bigcode/the-stack) dataset and [SantaCoder](https://huggingface.co/bigcode/santacoder) model.
|
| 10 |
-
|
| 11 |
-
We show information about existing programming languages and models trained on them. If you trained a model on The Stack, let us know so we feature your model! π
|
| 12 |
"""
|
| 13 |
st.markdown(intro, unsafe_allow_html=True)
|
| 14 |
|
| 15 |
@st.cache()
|
| 16 |
def load_languages():
|
| 17 |
-
with open("languages.json", "r") as f:
|
| 18 |
languages = json.load(f)
|
| 19 |
return languages
|
| 20 |
|
|
@@ -22,7 +26,11 @@ def how_to_load(language):
|
|
| 22 |
text = f"""
|
| 23 |
```python
|
| 24 |
from datasets import load_dataset
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
```
|
| 27 |
"""
|
| 28 |
st.markdown(text)
|
|
@@ -34,43 +42,37 @@ def load_model(values, language):
|
|
| 34 |
You can also train your own model on The Stack using the instructions below π"""
|
| 35 |
st.write(text)
|
| 36 |
if st.button("Fine-tune your own model", key=4):
|
| 37 |
-
st.write("Code available at [GitHub link] + add preview
|
| 38 |
else:
|
| 39 |
-
text = f"""{model} is a model that was trained on the {language}
|
| 40 |
code = f"""
|
| 41 |
```python
|
| 42 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 43 |
|
| 44 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
| 45 |
-
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained({model})
|
| 47 |
-
model = AutoModelForCausalLM.from_pretrained({model}, trust_remote_code=True)
|
| 48 |
|
| 49 |
-
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt")
|
| 50 |
outputs = model.generate(inputs)
|
| 51 |
print(tokenizer.decode(outputs[0]))
|
| 52 |
```
|
| 53 |
"""
|
| 54 |
st.write(text)
|
| 55 |
st.markdown(code)
|
| 56 |
-
st.write("The scores of this model are the following:")
|
| 57 |
-
for key, value in values["scores"].items():
|
| 58 |
-
st.write(f"{key}: {value}")
|
| 59 |
|
| 60 |
def generate_code(
|
| 61 |
demo, gen_prompt, max_new_tokens=40, temperature=0.2, seed=0
|
| 62 |
):
|
| 63 |
# call space using its API endpoint
|
| 64 |
-
try:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
except:
|
| 73 |
-
generated_text = ""
|
| 74 |
return generated_text
|
| 75 |
|
| 76 |
def init_nested_buttons():
|
|
@@ -86,9 +88,9 @@ def init_nested_buttons():
|
|
| 86 |
|
| 87 |
languages = load_languages()
|
| 88 |
|
| 89 |
-
col1, col2 = st.columns([1,
|
| 90 |
with col1:
|
| 91 |
-
selected_language = st.selectbox("
|
| 92 |
|
| 93 |
st.write(f"Here's how you can load the {selected_language.capitalize()} subset of The Stack:")
|
| 94 |
code = how_to_load(selected_language)
|
|
@@ -101,21 +103,22 @@ if st.session_state["Models trained on dataset"]:
|
|
| 101 |
load_model(languages[selected_language], selected_language)
|
| 102 |
|
| 103 |
if languages[selected_language]["model"] and languages[selected_language]["gradio_demo"]:
|
| 104 |
-
st.write(f"Here's a demo to try the model, for more
|
| 105 |
gen_prompt = st.text_area(
|
| 106 |
"Generate code with prompt:",
|
| 107 |
-
value="# print hello world",
|
| 108 |
height=100,
|
| 109 |
).strip()
|
| 110 |
|
| 111 |
if st.button("Generate code"):
|
| 112 |
st.session_state["Generate code"] = not st.session_state["Generate code"]
|
| 113 |
if st.session_state["Generate code"]:
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
| 2 |
import requests
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
+
st.set_page_config(layout="wide")
|
| 6 |
+
with open("utils/table_contents.md", "r") as f:
|
| 7 |
+
contents = f.read()
|
| 8 |
+
|
| 9 |
+
st.sidebar.markdown(contents)
|
| 10 |
+
|
| 11 |
st.title("The Stack Bot π€")
|
| 12 |
|
| 13 |
intro = """
|
| 14 |
The Stack Bot is a tool to help you get started with tools developed in [BigCode](https://huggingface.co/bigcode),
|
| 15 |
such as [The Stack](https://huggingface.co/bigcode/the-stack) dataset and [SantaCoder](https://huggingface.co/bigcode/santacoder) model.
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
st.markdown(intro, unsafe_allow_html=True)
|
| 18 |
|
| 19 |
@st.cache()
|
| 20 |
def load_languages():
|
| 21 |
+
with open("utils/languages.json", "r") as f:
|
| 22 |
languages = json.load(f)
|
| 23 |
return languages
|
| 24 |
|
|
|
|
| 26 |
text = f"""
|
| 27 |
```python
|
| 28 |
from datasets import load_dataset
|
| 29 |
+
|
| 30 |
+
dataset = load_dataset("bigcode/the-stack", data_dir="data/{language}", split="train")
|
| 31 |
+
|
| 32 |
+
# print first element
|
| 33 |
+
print(dataset[0])
|
| 34 |
```
|
| 35 |
"""
|
| 36 |
st.markdown(text)
|
|
|
|
| 42 |
You can also train your own model on The Stack using the instructions below π"""
|
| 43 |
st.write(text)
|
| 44 |
if st.button("Fine-tune your own model", key=4):
|
| 45 |
+
st.write("Code available at [GitHub link] + add preview")
|
| 46 |
else:
|
| 47 |
+
text = f"""{model} is a model that was trained on the {language.capitalize()} subset of The Stack. Here's how to use it:"""
|
| 48 |
code = f"""
|
| 49 |
```python
|
| 50 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 51 |
|
|
|
|
|
|
|
| 52 |
tokenizer = AutoTokenizer.from_pretrained({model})
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained({model}, trust_remote_code=True)
|
| 54 |
|
| 55 |
+
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt")
|
| 56 |
outputs = model.generate(inputs)
|
| 57 |
print(tokenizer.decode(outputs[0]))
|
| 58 |
```
|
| 59 |
"""
|
| 60 |
st.write(text)
|
| 61 |
st.markdown(code)
|
| 62 |
+
st.write(f"The scores of this model are the following: {values['scores']}")
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def generate_code(
|
| 65 |
demo, gen_prompt, max_new_tokens=40, temperature=0.2, seed=0
|
| 66 |
):
|
| 67 |
# call space using its API endpoint
|
| 68 |
+
#try:
|
| 69 |
+
url = (
|
| 70 |
+
f"{demo}/run/predict/"
|
| 71 |
+
)
|
| 72 |
+
r = requests.post(
|
| 73 |
+
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
|
| 74 |
+
)
|
| 75 |
+
generated_text = r.json()["data"][0]
|
|
|
|
|
|
|
| 76 |
return generated_text
|
| 77 |
|
| 78 |
def init_nested_buttons():
|
|
|
|
| 88 |
|
| 89 |
languages = load_languages()
|
| 90 |
|
| 91 |
+
col1, col2 = st.columns([1, 1.5])
|
| 92 |
with col1:
|
| 93 |
+
selected_language = st.selectbox("Select one of 358 languages in The Stack", list(languages.keys()), key=1)
|
| 94 |
|
| 95 |
st.write(f"Here's how you can load the {selected_language.capitalize()} subset of The Stack:")
|
| 96 |
code = how_to_load(selected_language)
|
|
|
|
| 103 |
load_model(languages[selected_language], selected_language)
|
| 104 |
|
| 105 |
if languages[selected_language]["model"] and languages[selected_language]["gradio_demo"]:
|
| 106 |
+
st.write(f"Here's a demo to try the model, for more flexibilty you can use the [Gradio demo]({languages[selected_language]['gradio_demo']}).")
|
| 107 |
gen_prompt = st.text_area(
|
| 108 |
"Generate code with prompt:",
|
| 109 |
+
value="# Implement a function to print hello world",
|
| 110 |
height=100,
|
| 111 |
).strip()
|
| 112 |
|
| 113 |
if st.button("Generate code"):
|
| 114 |
st.session_state["Generate code"] = not st.session_state["Generate code"]
|
| 115 |
if st.session_state["Generate code"]:
|
| 116 |
+
with st.spinner("Generating code..."):
|
| 117 |
+
generated_text = generate_code(
|
| 118 |
+
demo=languages[selected_language]["gradio_demo"],
|
| 119 |
+
gen_prompt=gen_prompt,
|
| 120 |
+
)
|
| 121 |
+
if not generated_text:
|
| 122 |
+
st.markdown(f"Error: could not generate code. Make sure the Gradio demo at [{languages[selected_language]['gradio_demo']}]({languages[selected_language]['gradio_demo']}) works.")
|
| 123 |
+
else:
|
| 124 |
+
st.code(generated_text)
|
languages.json β utils/languages.json
RENAMED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
{"python": {"num_examples": 10, "model": "bigcode/santacoder", "scores": {"HumanEval-pass@1": 10, "HumanEval-pass@10": 20, "HumanEval-pass@100": 40}, "gradio_demo": "
|
| 2 |
-
"java": {"num_examples": 10, "model": "bigcode/santacoder", "scores": { "HumanEval-pass@1": 10, "HumanEval-pass@10": 20, "HumanEval-pass@100": 40}, "gradio_demo": "
|
| 3 |
-
"javascript": {"num_examples": 10, "model": "bigcode/santacoder", "scores": { "HumanEval-pass@1": 10, "HumanEval-pass@10": 20, "HumanEval-pass@100": 40}, "gradio_demo": "
|
| 4 |
"typescript": {"num_examples": 10, "model": ""},
|
| 5 |
"go": {"num_examples": 10, "model": ""},
|
| 6 |
"php": {"num_examples": 10, "model": ""},
|
|
|
|
| 1 |
+
{"python": {"num_examples": 10, "model": "bigcode/santacoder", "scores": {"HumanEval-pass@1": 10, "HumanEval-pass@10": 20, "HumanEval-pass@100": 40}, "gradio_demo": "https://loubnabnl-santa-demo.hf.space"},
|
| 2 |
+
"java": {"num_examples": 10, "model": "bigcode/santacoder", "scores": { "HumanEval-pass@1": 10, "HumanEval-pass@10": 20, "HumanEval-pass@100": 40}, "gradio_demo": "https://loubnabnl-santa-demo.hf.space"},
|
| 3 |
+
"javascript": {"num_examples": 10, "model": "bigcode/santacoder", "scores": { "HumanEval-pass@1": 10, "HumanEval-pass@10": 20, "HumanEval-pass@100": 40}, "gradio_demo": "https://loubnabnl-santa-demo.hf.space"},
|
| 4 |
"typescript": {"num_examples": 10, "model": ""},
|
| 5 |
"go": {"num_examples": 10, "model": ""},
|
| 6 |
"php": {"num_examples": 10, "model": ""},
|
utils/table_contents.md
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### π Table of contents π
|
| 2 |
+
|
| 3 |
+
1 - [The Stack](https://huggingface.co/bigcode/the-stack) exploration
|
| 4 |
+
|
| 5 |
+
2 - Models trained on The Stack (e.g. [SantaCoder](https://huggingface.co/bigcode/santacodee))
|
| 6 |
+
|
| 7 |
+
3 - Demos for code generation
|
| 8 |
+
|
| 9 |
+
If you trained a model on The Stack, let us know so we can feature it! π
|