Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,8 +7,6 @@ import pandas as pd
|
|
| 7 |
# from google.genai import types
|
| 8 |
import torch
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
-
from smolagents.agents import ReActAgent
|
| 11 |
-
from smolagents.tools import tool
|
| 12 |
|
| 13 |
# (Keep Constants as is)
|
| 14 |
# --- Constants ---
|
|
@@ -69,39 +67,72 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
| 69 |
# print(f"Error during Gemini API call: {str(e)}")
|
| 70 |
# return f"Error: {str(e)}"
|
| 71 |
|
| 72 |
-
class BasicAgent(ReActAgent):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def __init__(self):
|
| 74 |
print("BasicAgent using local LLM initialized.")
|
| 75 |
|
| 76 |
-
# Load a small
|
| 77 |
-
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" #
|
| 78 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 79 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 80 |
model_name,
|
| 81 |
torch_dtype=torch.float16,
|
| 82 |
-
device_map="auto" #
|
| 83 |
)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
"""Core method for answering a task."""
|
| 89 |
-
prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
|
| 90 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 91 |
|
| 92 |
with torch.no_grad():
|
| 93 |
outputs = self.model.generate(
|
| 94 |
**inputs,
|
| 95 |
-
max_new_tokens=
|
| 96 |
do_sample=True,
|
| 97 |
temperature=0.7,
|
| 98 |
-
top_p=0.
|
| 99 |
top_k=50,
|
| 100 |
)
|
| 101 |
-
|
| 102 |
|
| 103 |
-
# Extract
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
|
| 106 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 107 |
"""
|
|
|
|
| 7 |
# from google.genai import types
|
| 8 |
import torch
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# (Keep Constants as is)
|
| 12 |
# --- Constants ---
|
|
|
|
| 67 |
# print(f"Error during Gemini API call: {str(e)}")
|
| 68 |
# return f"Error: {str(e)}"
|
| 69 |
|
| 70 |
+
# class BasicAgent(ReActAgent):
|
| 71 |
+
# def __init__(self):
|
| 72 |
+
# print("BasicAgent using local LLM initialized.")
|
| 73 |
+
|
| 74 |
+
# # Load a small model from Hugging Face
|
| 75 |
+
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # You can pick another lightweight model
|
| 76 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 77 |
+
# self.model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
+
# model_name,
|
| 79 |
+
# torch_dtype=torch.float16,
|
| 80 |
+
# device_map="auto" # Automatically choose GPU/CPU
|
| 81 |
+
# )
|
| 82 |
+
|
| 83 |
+
# super().__init__(tools=[]) # No tools for now
|
| 84 |
+
|
| 85 |
+
# def call(self, task: str) -> str:
|
| 86 |
+
# """Core method for answering a task."""
|
| 87 |
+
# prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
|
| 88 |
+
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 89 |
+
|
| 90 |
+
# with torch.no_grad():
|
| 91 |
+
# outputs = self.model.generate(
|
| 92 |
+
# **inputs,
|
| 93 |
+
# max_new_tokens=200,
|
| 94 |
+
# do_sample=True,
|
| 95 |
+
# temperature=0.7,
|
| 96 |
+
# top_p=0.95,
|
| 97 |
+
# top_k=50,
|
| 98 |
+
# )
|
| 99 |
+
# answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 100 |
+
|
| 101 |
+
# # Extract only the answer part
|
| 102 |
+
# return answer.split("Answer:")[-1].strip()
|
| 103 |
+
class BasicAgent:
|
| 104 |
def __init__(self):
|
| 105 |
print("BasicAgent using local LLM initialized.")
|
| 106 |
|
| 107 |
+
# Load a small Hugging Face model
|
| 108 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Change if you want
|
| 109 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 110 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 111 |
model_name,
|
| 112 |
torch_dtype=torch.float16,
|
| 113 |
+
device_map="auto" # Use GPU if available
|
| 114 |
)
|
| 115 |
|
| 116 |
+
def __call__(self, task: str) -> str:
|
| 117 |
+
"""Answer a question."""
|
| 118 |
+
prompt = f"Answer the following question clearly and concisely:\n\n{task}\n\nAnswer:"
|
|
|
|
|
|
|
| 119 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 120 |
|
| 121 |
with torch.no_grad():
|
| 122 |
outputs = self.model.generate(
|
| 123 |
**inputs,
|
| 124 |
+
max_new_tokens=256,
|
| 125 |
do_sample=True,
|
| 126 |
temperature=0.7,
|
| 127 |
+
top_p=0.9,
|
| 128 |
top_k=50,
|
| 129 |
)
|
| 130 |
+
decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 131 |
|
| 132 |
+
# Extract the answer part
|
| 133 |
+
if "Answer:" in decoded:
|
| 134 |
+
return decoded.split("Answer:")[-1].strip()
|
| 135 |
+
return decoded.strip()
|
| 136 |
|
| 137 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 138 |
"""
|