Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,174 +3,14 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
-
from google import genai
|
| 7 |
-
from google.genai import types
|
| 8 |
import time
|
| 9 |
-
from smolagents import CodeAgent, DuckDuckGoSearchTool, WikipediaSearchTool, PythonInterpreterTool, FinalAnswerTool, LiteLLMModel
|
| 10 |
|
| 11 |
|
| 12 |
# (Keep Constants as is)
|
| 13 |
# --- Constants ---
|
| 14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 15 |
|
| 16 |
-
# --- Basic Agent Definition ---
|
| 17 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 18 |
-
# class BasicAgent:
|
| 19 |
-
# def __init__(self):
|
| 20 |
-
# print("BasicAgent initialized.")
|
| 21 |
-
# def __call__(self, question: str) -> str:
|
| 22 |
-
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 23 |
-
# fixed_answer = "This is a default answer."
|
| 24 |
-
# print(f"Agent returning fixed answer: {fixed_answer}")
|
| 25 |
-
# return fixed_answer
|
| 26 |
-
|
| 27 |
-
# class GeminiModel:
|
| 28 |
-
# def __init__(self, model_name="gemini-2.0-flash-exp"):
|
| 29 |
-
# api_key = os.getenv("GEMINI_API_KEY")
|
| 30 |
-
# if not api_key:
|
| 31 |
-
# raise ValueError("GEMINI_API_KEY is missing.")
|
| 32 |
-
|
| 33 |
-
# os.environ["GOOGLE_API_KEY"] = api_key
|
| 34 |
-
# self.client = genai.Client()
|
| 35 |
-
# self.model_id = model_name
|
| 36 |
-
|
| 37 |
-
# self.generation_config = types.GenerateContentConfig(
|
| 38 |
-
# temperature=0.4,
|
| 39 |
-
# top_p=0.9,
|
| 40 |
-
# top_k=40,
|
| 41 |
-
# candidate_count=1,
|
| 42 |
-
# seed=42,
|
| 43 |
-
# presence_penalty=0.0,
|
| 44 |
-
# frequency_penalty=0.0,
|
| 45 |
-
# )
|
| 46 |
-
|
| 47 |
-
# def __call__(self, prompt: str, **kwargs) -> str:
|
| 48 |
-
# """Send prompt to Gemini."""
|
| 49 |
-
# try:
|
| 50 |
-
# response = self.client.generate_content(
|
| 51 |
-
# model=self.model_id,
|
| 52 |
-
# contents=[{"role": "user", "parts": [{"text": prompt}]}],
|
| 53 |
-
# generation_config=self.generation_config
|
| 54 |
-
# )
|
| 55 |
-
# # Return a dictionary that CodeAgent expects
|
| 56 |
-
# return {"content": response.candidates[0].content.parts[0].text.strip()}
|
| 57 |
-
# except Exception as e:
|
| 58 |
-
# return {"content": f"Error during Gemini call: {str(e)}"}
|
| 59 |
-
|
| 60 |
-
# # Define BasicAgent properly
|
| 61 |
-
# class BasicAgent:
|
| 62 |
-
# def __init__(self):
|
| 63 |
-
# print("Initializing CodeAgent with Gemini + tools.")
|
| 64 |
-
|
| 65 |
-
# # Load tools
|
| 66 |
-
# self.search_tool = DuckDuckGoSearchTool()
|
| 67 |
-
|
| 68 |
-
# # Build the agent
|
| 69 |
-
# self.agent = CodeAgent(
|
| 70 |
-
# tools=[self.search_tool],
|
| 71 |
-
# model=GeminiModel(), # Our simple Gemini wrapper
|
| 72 |
-
# planning_interval=3 # Activate planning
|
| 73 |
-
# )
|
| 74 |
-
|
| 75 |
-
# def __call__(self, question: str) -> str:
|
| 76 |
-
# """Call the CodeAgent."""
|
| 77 |
-
# print(f"Running agent for task: {question[:50]}...")
|
| 78 |
-
# try:
|
| 79 |
-
# result = self.agent.run(question)
|
| 80 |
-
|
| 81 |
-
# # Sleep to respect rate limits
|
| 82 |
-
# time.sleep(7)
|
| 83 |
-
# return result
|
| 84 |
-
# except Exception as e:
|
| 85 |
-
# return f"Error running agent: {str(e)}"
|
| 86 |
-
|
| 87 |
-
# class BasicAgent(ReActAgent):
|
| 88 |
-
# def __init__(self):
|
| 89 |
-
# print("BasicAgent using local LLM initialized.")
|
| 90 |
-
|
| 91 |
-
# # Load a small model from Hugging Face
|
| 92 |
-
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 93 |
-
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 94 |
-
# self.model = AutoModelForCausalLM.from_pretrained(
|
| 95 |
-
# model_name,
|
| 96 |
-
# torch_dtype=torch.float16,
|
| 97 |
-
# device_map="auto" # Automatically choose GPU/CPU
|
| 98 |
-
# )
|
| 99 |
-
|
| 100 |
-
# super().__init__(tools=[]) # No tools for now
|
| 101 |
-
|
| 102 |
-
# def call(self, task: str) -> str:
|
| 103 |
-
# """Core method for answering a task."""
|
| 104 |
-
# prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
|
| 105 |
-
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 106 |
-
|
| 107 |
-
# with torch.no_grad():
|
| 108 |
-
# outputs = self.model.generate(
|
| 109 |
-
# **inputs,
|
| 110 |
-
# max_new_tokens=200,
|
| 111 |
-
# do_sample=True,
|
| 112 |
-
# temperature=0.7,
|
| 113 |
-
# top_p=0.95,
|
| 114 |
-
# top_k=50,
|
| 115 |
-
# )
|
| 116 |
-
# answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 117 |
-
|
| 118 |
-
# # Extract only the answer part
|
| 119 |
-
# return answer.split("Answer:")[-1].strip()
|
| 120 |
-
|
| 121 |
-
# class BasicAgent:
|
| 122 |
-
# def __init__(self):
|
| 123 |
-
# print("BasicAgent using local LLM initialized.")
|
| 124 |
-
|
| 125 |
-
# # Load a small Hugging Face model
|
| 126 |
-
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Change if you want
|
| 127 |
-
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 128 |
-
# self.model = AutoModelForCausalLM.from_pretrained(
|
| 129 |
-
# model_name,
|
| 130 |
-
# torch_dtype=torch.float16,
|
| 131 |
-
# device_map="auto" # Use GPU if available
|
| 132 |
-
# )
|
| 133 |
-
|
| 134 |
-
# def __call__(self, task: str) -> str:
|
| 135 |
-
# """Answer a question."""
|
| 136 |
-
# prompt = f"Answer the following question clearly and concisely:\n\n{task}\n\nAnswer:"
|
| 137 |
-
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 138 |
-
|
| 139 |
-
# with torch.no_grad():
|
| 140 |
-
# outputs = self.model.generate(
|
| 141 |
-
# **inputs,
|
| 142 |
-
# max_new_tokens=256,
|
| 143 |
-
# do_sample=True,
|
| 144 |
-
# temperature=0.7,
|
| 145 |
-
# top_p=0.9,
|
| 146 |
-
# top_k=50,
|
| 147 |
-
# )
|
| 148 |
-
# decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 149 |
-
|
| 150 |
-
# # Extract the answer part
|
| 151 |
-
# if "Answer:" in decoded:
|
| 152 |
-
# return decoded.split("Answer:")[-1].strip()
|
| 153 |
-
# return decoded.strip()
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
# # Setup Gemini Client
|
| 158 |
-
# api_key = os.getenv("GEMINI_API_KEY")
|
| 159 |
-
# if not api_key:
|
| 160 |
-
# raise ValueError("GEMINI_API_KEY is missing.")
|
| 161 |
-
# os.environ["GOOGLE_API_KEY"] = api_key
|
| 162 |
-
# client = genai.Client()
|
| 163 |
-
# model_id = "gemini-2.0-flash-exp"
|
| 164 |
-
|
| 165 |
-
# generation_config = types.GenerateContentConfig(
|
| 166 |
-
# temperature=0.4,
|
| 167 |
-
# top_p=0.9,
|
| 168 |
-
# top_k=40,
|
| 169 |
-
# candidate_count=1,
|
| 170 |
-
# seed=42,
|
| 171 |
-
# presence_penalty=0.0,
|
| 172 |
-
# frequency_penalty=0.0,
|
| 173 |
-
# )
|
| 174 |
|
| 175 |
|
| 176 |
# Define the real agent
|
|
@@ -178,7 +18,7 @@ class BasicAgent:
|
|
| 178 |
def __init__(self):
|
| 179 |
print("Improved BasicAgent initialized with Gemini and enhanced tools.")
|
| 180 |
|
| 181 |
-
# Load Gemini through LiteLLM
|
| 182 |
self.model = LiteLLMModel(
|
| 183 |
model_id="gemini/gemini-2.0-flash-lite",
|
| 184 |
api_key=os.getenv("GEMINI_API_TOKEN"),
|
|
@@ -219,8 +59,8 @@ class BasicAgent:
|
|
| 219 |
result = f"Error: {str(e)}"
|
| 220 |
|
| 221 |
# Rate limiting to avoid 429 errors or API limits
|
| 222 |
-
print("Waiting
|
| 223 |
-
time.sleep(
|
| 224 |
|
| 225 |
return result
|
| 226 |
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
| 6 |
import time
|
| 7 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, WikipediaSearchTool, PythonInterpreterTool, FinalAnswerTool, LiteLLMModel
|
| 8 |
|
| 9 |
|
| 10 |
# (Keep Constants as is)
|
| 11 |
# --- Constants ---
|
| 12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
# Define the real agent
|
|
|
|
| 18 |
def __init__(self):
|
| 19 |
print("Improved BasicAgent initialized with Gemini and enhanced tools.")
|
| 20 |
|
| 21 |
+
# Load Gemini through LiteLLM
|
| 22 |
self.model = LiteLLMModel(
|
| 23 |
model_id="gemini/gemini-2.0-flash-lite",
|
| 24 |
api_key=os.getenv("GEMINI_API_TOKEN"),
|
|
|
|
| 59 |
result = f"Error: {str(e)}"
|
| 60 |
|
| 61 |
# Rate limiting to avoid 429 errors or API limits
|
| 62 |
+
print("Waiting 5 seconds to respect rate limits...")
|
| 63 |
+
time.sleep(5)
|
| 64 |
|
| 65 |
return result
|
| 66 |
|