File size: 6,754 Bytes
775a7d0 0b8a777 775a7d0 4af310b 88cc76a 9d21791 4af310b 9d21791 0b8a777 88cc76a 0b8a777 4af310b 88cc76a 4af310b 0b8a777 4af310b 0b8a777 88cc76a 0b8a777 88cc76a 0b8a777 4af310b 88cc76a 0b8a777 88cc76a 0b8a777 88cc76a 0b8a777 88cc76a 0b8a777 9d21791 4af310b 775a7d0 9d21791 88cc76a be6b61f 58a1fee be6b61f 58a1fee be6b61f 4af310b 88cc76a 4af310b 0b8a777 88cc76a 0b8a777 4af310b 88cc76a 9d21791 88cc76a 9d21791 0b8a777 4af310b 88cc76a 4af310b 0b8a777 88cc76a 0b8a777 775a7d0 88cc76a 9d21791 88cc76a 4af310b 88cc76a 0b8a777 4af310b 88cc76a 4af310b 0b8a777 4af310b 775a7d0 88cc76a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import faiss
import os
import pickle
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer, CrossEncoder
from rank_bm25 import BM25Okapi
USE_HNSW = True
USE_RERANKER = True
CHUNK_SIZE = 800
CHUNK_OVERLAP = 200
DB_FILE_INDEX = "vector.index"
DB_FILE_META = "metadata.pkl"
DB_FILE_BM25 = "bm25.pkl"
index = None
documents = []
metadata = []
bm25 = None
tokenized_corpus = []
embedder = SentenceTransformer("all-MiniLM-L6-v2")
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
def chunk_text(text):
import re
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks, current = [], ""
for s in sentences:
if len(current) + len(s) > CHUNK_SIZE and current:
chunks.append(current.strip())
overlap = max(0, len(current) - CHUNK_OVERLAP)
current = current[overlap:] + " " + s
else:
current += " " + s if current else s
if current.strip():
chunks.append(current.strip())
return chunks
def save_db():
if index:
faiss.write_index(index, DB_FILE_INDEX)
if documents:
with open(DB_FILE_META, "wb") as f:
pickle.dump({"documents": documents, "metadata": metadata}, f)
if bm25:
with open(DB_FILE_BM25, "wb") as f:
pickle.dump(bm25, f)
def load_db():
global index, documents, metadata, bm25
if os.path.exists(DB_FILE_INDEX) and os.path.exists(DB_FILE_META):
index = faiss.read_index(DB_FILE_INDEX)
with open(DB_FILE_META, "rb") as f:
data = pickle.load(f)
documents = data["documents"]
metadata = data["metadata"]
if os.path.exists(DB_FILE_BM25):
with open(DB_FILE_BM25, "rb") as f:
bm25 = pickle.load(f)
elif documents:
# Auto-backfill if documents exist but BM25 is missing
print("Backfilling BM25 index on first load...")
tokenized_corpus = [doc.split(" ") for doc in documents]
bm25 = BM25Okapi(tokenized_corpus)
with open(DB_FILE_BM25, "wb") as f:
pickle.dump(bm25, f)
load_db()
def clear_database():
global index, documents, metadata, bm25
index = None
documents = []
metadata = []
bm25 = None
if os.path.exists(DB_FILE_INDEX):
os.remove(DB_FILE_INDEX)
if os.path.exists(DB_FILE_META):
os.remove(DB_FILE_META)
if os.path.exists(DB_FILE_BM25):
os.remove(DB_FILE_BM25)
def ingest_documents(files):
global index, documents, metadata
texts, meta = [], []
for file in files:
if file.filename.endswith(".pdf"):
# Save temp file for pymupdf4llm
import tempfile
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(file.file.read())
tmp_path = tmp.name
try:
# Use pymupdf4llm to extract markdown with tables
import pymupdf4llm
# Get list of dicts: [{'text': '...', 'metadata': {'page': 1, ...}}]
pages_data = pymupdf4llm.to_markdown(tmp_path, page_chunks=True)
for page_obj in pages_data:
p_text = page_obj["text"]
p_num = page_obj["metadata"].get("page", "N/A")
# Chunk within the page to preserve page context
for chunk in chunk_text(p_text):
texts.append(chunk)
meta.append({"source": file.filename, "page": p_num})
finally:
os.remove(tmp_path)
elif file.filename.endswith(".txt"):
content = file.file.read().decode("utf-8", errors="ignore")
for chunk in chunk_text(content):
texts.append(chunk)
meta.append({"source": file.filename, "page": "N/A"})
if not texts:
raise ValueError("No readable text found (OCR needed for scanned PDFs).")
embeddings = embedder.encode(texts, convert_to_numpy=True, normalize_embeddings=True)
if index is None:
dim = embeddings.shape[1]
index = faiss.IndexHNSWFlat(dim, 32) if USE_HNSW else faiss.IndexFlatIP(dim)
index.hnsw.efConstruction = 200
index.hnsw.efSearch = 64
index.add(embeddings)
documents.extend(texts)
metadata.extend(meta)
# Update BM25
tokenized_corpus = [doc.split(" ") for doc in documents]
bm25 = BM25Okapi(tokenized_corpus)
save_db()
return len(documents)
def search_knowledge(query, top_k=8):
if index is None:
return []
# 1. Vector Search
qvec = embedder.encode([query], convert_to_numpy=True, normalize_embeddings=True)
scores, indices = index.search(qvec, top_k)
vector_results = {}
for i, (idx, score) in enumerate(zip(indices[0], scores[0])):
if idx == -1: continue
vector_results[idx] = i # Store rank (0-based)
# 2. Keyword Search (BM25)
bm25_results = {}
if bm25:
tokenized_query = query.split(" ")
bm25_scores = bm25.get_scores(tokenized_query)
# Get top_k indices
top_n = sorted(range(len(bm25_scores)), key=lambda i: bm25_scores[i], reverse=True)[:top_k]
for i, idx in enumerate(top_n):
bm25_results[idx] = i # Store rank
# 3. Reciprocal Rank Fusion (RRF)
# score = 1 / (k + rank)
k = 60
candidates_idx = set(vector_results.keys()) | set(bm25_results.keys())
merged_candidates = []
for idx in candidates_idx:
v_rank = vector_results.get(idx, float('inf'))
b_rank = bm25_results.get(idx, float('inf'))
rrf_score = (1 / (k + v_rank)) + (1 / (k + b_rank))
merged_candidates.append({
"text": documents[idx],
"metadata": metadata[idx],
"score": rrf_score, # This is RRF score, not cosine/BM25 score
"vector_rank": v_rank if v_rank != float('inf') else None,
"bm25_rank": b_rank if b_rank != float('inf') else None
})
# Sort by RRF score
merged_candidates.sort(key=lambda x: x["score"], reverse=True)
# 4. Rerank Top Candidates
candidates = merged_candidates[:10] # Take top 10 for reranking
if USE_RERANKER and candidates:
pairs = [(query, c["text"]) for c in candidates]
rerank_scores = reranker.predict(pairs)
for c, rs in zip(candidates, rerank_scores):
c["rerank"] = float(rs)
candidates.sort(key=lambda x: x["rerank"], reverse=True)
return candidates[:5]
def get_all_chunks(limit=80):
return [{"text": t, "metadata": m} for t, m in zip(documents[:limit], metadata[:limit])]
|