Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import urllib.parse
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def read_google_sheet(sheet_id, sheet_name):
|
| 11 |
+
# URL encode the sheet name
|
| 12 |
+
encoded_sheet_name = urllib.parse.quote(sheet_name)
|
| 13 |
+
|
| 14 |
+
# Construct the base URL
|
| 15 |
+
base_url = f"https://docs.google.com/spreadsheets/d/{sheet_id}/gviz/tq?tqx=out:csv&sheet={encoded_sheet_name}"
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
# Read the sheet into a pandas DataFrame
|
| 19 |
+
df = pd.read_csv(base_url)
|
| 20 |
+
return df
|
| 21 |
+
except Exception as e:
|
| 22 |
+
print(f"An error occurred: {e}")
|
| 23 |
+
return None
|
| 24 |
+
|
| 25 |
+
# Function to generate tick values and labels
|
| 26 |
+
def log2_ticks(values):
|
| 27 |
+
min_val, max_val = np.floor(values.min()), np.ceil(values.max())
|
| 28 |
+
print(max_val, min_val)
|
| 29 |
+
tick_vals = np.arange(min_val, max_val+1)
|
| 30 |
+
tick_text = [f"{2**val:.0f}" for val in tick_vals]
|
| 31 |
+
return tick_vals, tick_text
|
| 32 |
+
|
| 33 |
+
# Load data
|
| 34 |
+
sheet_id = "1g07tdGf9ocOZ8XZgLGepI5Q4u6ZH961J0T9O9P64rYw"
|
| 35 |
+
sheet_names = [f"{i} node" if i == 1 else f"{i} nodes" for i in [1, 8]]
|
| 36 |
+
|
| 37 |
+
df = pd.concat([read_google_sheet(sheet_id, sheet_name) for sheet_name in sheet_names])
|
| 38 |
+
df = df.rename(columns={"micro_batch_size":"mbs", "batch_accumulation_per_replica": "gradacc"})
|
| 39 |
+
df["tok/s/gpu"] = df["tok/s/gpu"].replace(-1, 0)
|
| 40 |
+
df["throughput"] = df["tok/s/gpu"]*df["nnodes"]*8
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_figure(nodes, hide_nans):
|
| 45 |
+
|
| 46 |
+
# Create a temporary DataFrame with only the rows where nnodes is 8
|
| 47 |
+
df_tmp = df[df["nnodes"]==nodes].reset_index(drop=True)
|
| 48 |
+
|
| 49 |
+
if hide_nans:
|
| 50 |
+
df_tmp = df_tmp.dropna()
|
| 51 |
+
|
| 52 |
+
# Apply log2 scale to all columns except throughput
|
| 53 |
+
log_columns = ['dp', 'tp', 'pp', 'mbs', 'gradacc']
|
| 54 |
+
for col in log_columns:
|
| 55 |
+
df_tmp[f'log_{col}'] = np.log2(df_tmp[col])
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Generate dimensions list
|
| 60 |
+
dimensions = []
|
| 61 |
+
for col in log_columns:
|
| 62 |
+
ticks, labels = log2_ticks(df_tmp[f'log_{col}'])
|
| 63 |
+
dimensions.append(
|
| 64 |
+
dict(range = [df_tmp[f'log_{col}'].min(), df_tmp[f'log_{col}'].max()],
|
| 65 |
+
label = col,
|
| 66 |
+
values = df_tmp[f'log_{col}'],
|
| 67 |
+
tickvals = ticks,
|
| 68 |
+
ticktext = labels)
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Add throughput dimension (not log-scaled)
|
| 72 |
+
dimensions.append(
|
| 73 |
+
dict(range = [df_tmp['throughput'].min(), df_tmp['throughput'].max()],
|
| 74 |
+
label = 'throughput',
|
| 75 |
+
values = df_tmp['throughput'])
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
fig = go.Figure(data=
|
| 79 |
+
go.Parcoords(
|
| 80 |
+
line = dict(color = df_tmp['throughput'],
|
| 81 |
+
colorscale = 'GnBu',
|
| 82 |
+
showscale = True,
|
| 83 |
+
cmin = df_tmp['throughput'].min(),
|
| 84 |
+
cmax = df_tmp['throughput'].max()),
|
| 85 |
+
dimensions = dimensions
|
| 86 |
+
)
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Update the layout if needed
|
| 90 |
+
fig.update_layout(
|
| 91 |
+
title = "3D parallel setup throughput ",
|
| 92 |
+
plot_bgcolor = 'white',
|
| 93 |
+
paper_bgcolor = 'white'
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
return fig
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
with gr.Blocks() as demo:
|
| 101 |
+
title = gr.Markdown("# 3D parallel benchmark")
|
| 102 |
+
with gr.Row():
|
| 103 |
+
nnodes = gr.Dropdown(choices=[1, 8], label="Number of nodes", value=8)
|
| 104 |
+
hide_nan = gr.Dropdown(choices=[False, True], label="Hide NaNs", value=False)
|
| 105 |
+
|
| 106 |
+
plot = gr.Plot()
|
| 107 |
+
demo.load(get_figure, [nnodes, hide_nan], [plot])
|
| 108 |
+
nnodes.change(get_figure, [nnodes, hide_nan], [plot])
|
| 109 |
+
hide_nan.change(get_figure, [nnodes, hide_nan], [plot])
|
| 110 |
+
|
| 111 |
+
demo.launch(show_api=False)
|