Spaces:
Running
Running
File size: 5,635 Bytes
9ae8d89 0a14325 b7600d0 9ae8d89 20dad4a 9ae8d89 09b313f 9ae8d89 d8147b8 ca44f9b 9ae8d89 0a14325 0da5ee3 0a14325 ba515db d83f3a1 0da5ee3 553b217 2a7ac72 553b217 2a7ac72 553b217 2a7ac72 20dad4a fb84311 d83f3a1 4b6eb81 b7600d0 09b313f 9ae8d89 09b313f 9ae8d89 351418d 9ae8d89 351418d 9ae8d89 351418d b50c184 9ae8d89 d86ca68 0a14325 553b217 20dad4a 9ae8d89 351418d d86ca68 553b217 20dad4a 351418d d86ca68 351418d 9ae8d89 351418d 9ae8d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
# changes to be made here
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn, ClosedEndedMultilingualColumns, EHRSQLZeroShotColumns, EHRSQLFewShotColumns, MedCalcDirectAnswerColumns, MedCalcOneShotCotColumns, MedCalcZeroShotCotColumns, MedECZeroShotColumns, MedECOneShotColumns
from src.leaderboard.read_evals import get_raw_eval_results
from src.envs import PRIVATE_REPO
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, evaluation_metric:str, subset:str) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path, evaluation_metric)
all_data_json = [v.to_dict(subset=subset) for v in raw_data if not v.full_model.startswith("/models_llm")]
df = pd.DataFrame.from_records(all_data_json)
# changes to be made here
if subset == "datasets":
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
elif subset == "med_safety":
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
elif subset.startswith("open_ended"):
df = df.sort_values(by=["ELO"], ascending=False)
elif subset == "medical_summarization":
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
elif subset == "aci":
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
elif subset == "soap":
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
elif subset == "closed_ended_arabic":
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
elif subset == "healthbench":
df = df.sort_values(by=["Overall Score"], ascending=False)
elif subset == "healthbench_hard":
df = df.sort_values(by=["Overall Score"], ascending=False)
elif subset == "closed_ended_multilingual":
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
elif subset == "ehrsql_zero_shot":
df = df.sort_values(by=["RS (0)"], ascending=False)
elif subset == "ehrsql_few_shot":
df = df.sort_values(by=["RS (0)"], ascending=False)
elif subset == "medcalc_direct_answer":
df = df.sort_values(by=["Overall"], ascending=False)
elif subset == "medcalc_one_shot_cot":
df = df.sort_values(by=["Overall"], ascending=False)
elif subset == "medcalc_zero_shot_cot":
df = df.sort_values(by=["Overall"], ascending=False)
elif subset == "medec_zero_shot":
df = df.sort_values(by=["Error Flag Accuracy (%)"], ascending=False)
elif subset == "medec_one_shot":
df = df.sort_values(by=["Error Flag Accuracy (%)"], ascending=False)
cols = list(set(df.columns).intersection(set(cols)))
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return raw_data, df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
full_path = os.path.join(save_path, entry)
if os.path.isdir(full_path):
continue
if entry.endswith(".json"):
with open(full_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model_name"]) if not data["private"] else data["model_name"]
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
data[EvalQueueColumn.closed_ended_status.name] = data["status"]["closed-ended"]
data[EvalQueueColumn.open_ended_status.name] = data["status"]["open-ended"]
data[EvalQueueColumn.med_safety_status.name] = data["status"]["med-safety"]
data[EvalQueueColumn.medical_summarization_status.name] = data["status"]["medical-summarization"]
data[EvalQueueColumn.note_generation_status.name] = data["status"]["note-generation"]
if PRIVATE_REPO:
data[EvalQueueColumn.closed_ended_arabic_status.name] = data["status"]["closed-ended-arabic"]
all_evals.append(data)
pending_list = []
running_list = []
finished_list = []
for run in all_evals:
status_list = [run["status"]["closed-ended"], run["status"]["open-ended"], run["status"]["med-safety"], run["status"]["medical-summarization"], run["status"]["note-generation"]]
if PRIVATE_REPO:
status_list.append(run["status"]["closed-ended-arabic"])
if "RUNNING" in status_list:
running_list.append(run)
elif "PENDING" in status_list or "RERUN" in status_list:
pending_list.append(run)
else:
finished_list.append(run)
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]
|