Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| import copy | |
| import os | |
| from PIL import Image | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
| from typing import Tuple, Optional | |
| from my_model.utilities.gen_utilities import free_gpu_resources | |
| from my_model.captioner.image_captioning import ImageCaptioningModel | |
| from my_model.object_detection import ObjectDetector | |
| import my_model.config.kbvqa_config as config | |
| class KBVQA: | |
| """ | |
| The KBVQA class encapsulates the functionality for the Knowledge-Based Visual Question Answering (KBVQA) model. | |
| It integrates various components such as an image captioning model, object detection model, and a fine-tuned | |
| language model (LLAMA2) on OK-VQA dataset for generating answers to visual questions. | |
| Attributes: | |
| kbvqa_model_name (str): Name of the fine-tuned language model used for KBVQA. | |
| quantization (str): The quantization setting for the model (e.g., '4bit', '8bit'). | |
| max_context_window (int): The maximum number of tokens allowed in the model's context window. | |
| add_eos_token (bool): Flag to indicate whether to add an end-of-sentence token to the tokenizer. | |
| trust_remote (bool): Flag to indicate whether to trust remote code when using the tokenizer. | |
| use_fast (bool): Flag to indicate whether to use the fast version of the tokenizer. | |
| low_cpu_mem_usage (bool): Flag to optimize model loading for low CPU memory usage. | |
| kbvqa_tokenizer (Optional[AutoTokenizer]): The tokenizer for the KBVQA model. | |
| captioner (Optional[ImageCaptioningModel]): The model used for generating image captions. | |
| detector (Optional[ObjectDetector]): The object detection model. | |
| detection_model (Optional[str]): The name of the object detection model. | |
| detection_confidence (Optional[float]): The confidence threshold for object detection. | |
| kbvqa_model (Optional[AutoModelForCausalLM]): The fine-tuned language model for KBVQA. | |
| bnb_config (BitsAndBytesConfig): Configuration for BitsAndBytes optimized model. | |
| access_token (str): Access token for Hugging Face API. | |
| current_prompt_length (int): Prompt length. | |
| Methods: | |
| create_bnb_config: Creates a BitsAndBytes configuration based on the quantization setting. | |
| load_caption_model: Loads the image captioning model. | |
| get_caption: Generates a caption for a given image. | |
| load_detector: Loads the object detection model. | |
| detect_objects: Detects objects in a given image. | |
| load_fine_tuned_model: Loads the fine-tuned KBVQA model along with its tokenizer. | |
| all_models_loaded: Checks if all the required models are loaded. | |
| force_reload_model: Forces a reload of all models, freeing up GPU resources. | |
| format_prompt: Formats the prompt for the KBVQA model. | |
| generate_answer: Generates an answer to a given question using the KBVQA model. | |
| """ | |
| def __init__(self): | |
| # self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2]) | |
| self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME | |
| self.quantization: str = config.QUANTIZATION | |
| self.max_context_window: int = config.MAX_CONTEXT_WINDOW | |
| self.add_eos_token: bool = config.ADD_EOS_TOKEN | |
| self.trust_remote: bool = config.TRUST_REMOTE | |
| self.use_fast: bool = config.USE_FAST | |
| self.low_cpu_mem_usage: bool = config.LOW_CPU_MEM_USAGE | |
| self.kbvqa_tokenizer: Optional[AutoTokenizer] = None | |
| self.captioner: Optional[ImageCaptioningModel] = None | |
| self.detector: Optional[ObjectDetector] = None | |
| self.detection_model: Optional[str] = None | |
| self.detection_confidence: Optional[float] = None | |
| self.kbvqa_model: Optional[AutoModelForCausalLM] = None | |
| self.bnb_config: BitsAndBytesConfig = self.create_bnb_config() | |
| self.access_token: str = config.HUGGINGFACE_TOKEN | |
| self.current_prompt_length = None | |
| def create_bnb_config(self) -> BitsAndBytesConfig: | |
| """ | |
| Creates a BitsAndBytes configuration based on the quantization setting. | |
| Returns: | |
| BitsAndBytesConfig: Configuration for BitsAndBytes optimized model. | |
| """ | |
| if self.quantization == '4bit': | |
| return BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| elif self.quantization == '8bit': | |
| return BitsAndBytesConfig( | |
| load_in_8bit=True, | |
| bnb_8bit_use_double_quant=True, | |
| bnb_8bit_quant_type="nf4", | |
| bnb_8bit_compute_dtype=torch.bfloat16 | |
| ) | |
| def load_caption_model(self) -> None: | |
| """ | |
| Loads the image captioning model into the KBVQA instance. | |
| """ | |
| self.captioner = ImageCaptioningModel() | |
| self.captioner.load_model() | |
| free_gpu_resources() | |
| def get_caption(self, img: Image.Image) -> str: | |
| """ | |
| Generates a caption for a given image using the image captioning model. | |
| Args: | |
| img (PIL.Image.Image): The image for which to generate a caption. | |
| Returns: | |
| str: The generated caption for the image. | |
| """ | |
| caption = self.captioner.generate_caption(img) | |
| free_gpu_resources() | |
| return caption | |
| def load_detector(self, model: str) -> None: | |
| """ | |
| Loads the object detection model. | |
| Args: | |
| model (str): The name of the object detection model to load. | |
| """ | |
| self.detector = ObjectDetector() | |
| self.detector.load_model(model) | |
| free_gpu_resources() | |
| def detect_objects(self, img: Image.Image) -> Tuple[Image.Image, str]: | |
| """ | |
| Detects objects in a given image using the loaded object detection model. | |
| Args: | |
| img (PIL.Image.Image): The image in which to detect objects. | |
| Returns: | |
| tuple: A tuple containing the image with detected objects drawn and a string representation of detected objects. | |
| """ | |
| image = self.detector.process_image(img) | |
| free_gpu_resources() | |
| detected_objects_string, detected_objects_list = self.detector.detect_objects(image, threshold=st.session_state['confidence_level']) | |
| free_gpu_resources() | |
| image_with_boxes = self.detector.draw_boxes(img, detected_objects_list) | |
| free_gpu_resources() | |
| return image_with_boxes, detected_objects_string | |
| def load_fine_tuned_model(self) -> None: | |
| """ | |
| Loads the fine-tuned KBVQA model along with its tokenizer. | |
| """ | |
| self.kbvqa_model = AutoModelForCausalLM.from_pretrained(self.kbvqa_model_name, | |
| device_map="auto", | |
| low_cpu_mem_usage=True, | |
| quantization_config=self.bnb_config, | |
| token=self.access_token) | |
| free_gpu_resources() | |
| self.kbvqa_tokenizer = AutoTokenizer.from_pretrained(self.kbvqa_model_name, | |
| use_fast=self.use_fast, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=self.trust_remote, | |
| add_eos_token=self.add_eos_token, | |
| token=self.access_token) | |
| free_gpu_resources() | |
| def all_models_loaded(self): | |
| """ | |
| Checks if all the required models (KBVQA, captioner, detector) are loaded. | |
| Returns: | |
| bool: True if all models are loaded, False otherwise. | |
| """ | |
| return self.kbvqa_model is not None and self.captioner is not None and self.detector is not None | |
| def format_prompt(self, current_query: str, history: Optional[str] = None, sys_prompt: Optional[str] = None, caption: str = None, objects: Optional[str] = None) -> str: | |
| """ | |
| Formats the prompt for the KBVQA model based on the provided parameters. | |
| Args: | |
| current_query (str): The current question to be answered. | |
| history (str, optional): The history of previous interactions. | |
| sys_prompt (str, optional): The system prompt or instructions for the model. | |
| caption (str, optional): The caption of the image. | |
| objects (str, optional): The detected objects in the image. | |
| Returns: | |
| str: The formatted prompt for the KBVQA model. | |
| """ | |
| B_SENT = '<s>' | |
| E_SENT = '</s>' | |
| B_INST = '[INST]' | |
| E_INST = '[/INST]' | |
| B_SYS = '<<SYS>>\n' | |
| E_SYS = '\n<</SYS>>\n\n' | |
| B_CAP = '[CAP]' | |
| E_CAP = '[/CAP]' | |
| B_QES = '[QES]' | |
| E_QES = '[/QES]' | |
| B_OBJ = '[OBJ]' | |
| E_OBJ = '[/OBJ]' | |
| current_query = current_query.strip() | |
| if sys_prompt is None: | |
| sys_prompt = config.SYSTEM_PROMPT.strip() | |
| if history is None: | |
| if objects is None: | |
| p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_QES}{current_query}{E_QES}{E_INST}""" | |
| else: | |
| p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_OBJ}{objects}{E_OBJ}{B_QES}taking into consideration the objects with high certainty, {current_query}{E_QES}{E_INST}""" | |
| else: | |
| p = f"""{history}\n{B_SENT}{B_INST} {B_QES}{current_query}{E_QES}{E_INST}""" | |
| return p | |
| def generate_answer(self, question: str, caption: str, detected_objects_str: str) -> str: | |
| """ | |
| Generates an answer to a given question using the KBVQA model. | |
| Args: | |
| question (str): The question to be answered. | |
| caption (str): The caption of the image related to the question. | |
| detected_objects_str (str): The string representation of detected objects in the image. | |
| Returns: | |
| str: The generated answer to the question. | |
| """ | |
| free_gpu_resources() | |
| prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str) | |
| num_tokens = len(self.kbvqa_tokenizer.tokenize(prompt)) | |
| self.current_prompt_length = num_tokens | |
| if num_tokens > self.max_context_window: | |
| st.warning(f"Prompt too long with {num_tokens} tokens, consider increasing the confidence threshold for the object detector") | |
| return | |
| model_inputs = self.kbvqa_tokenizer(prompt, add_special_tokens=False, return_tensors="pt").to('cuda') | |
| free_gpu_resources() | |
| input_ids = model_inputs["input_ids"] | |
| output_ids = self.kbvqa_model.generate(input_ids) | |
| free_gpu_resources() | |
| index = input_ids.shape[1] # needed to avoid printing the input prompt | |
| history = self.kbvqa_tokenizer.decode(output_ids[0], skip_special_tokens=False) | |
| output_text = self.kbvqa_tokenizer.decode(output_ids[0][index:], skip_special_tokens=True) | |
| return output_text.capitalize() | |
| def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload: bool = False) -> KBVQA: | |
| """ | |
| Prepares the KBVQA model for use, including loading necessary sub-models. | |
| Args: | |
| only_reload_detection_model (bool): If True, only the object detection model is reloaded. | |
| Returns: | |
| KBVQA: An instance of the KBVQA model ready for inference. | |
| """ | |
| if force_reload: | |
| loading_message = 'Force Reloading model.. this should take no more than a few minutes!' | |
| try: | |
| del kbvqa | |
| except: | |
| free_gpu_resources() | |
| pass | |
| free_gpu_resources() | |
| else: loading_message = 'Looading model.. this should take no more than 2 or 3 minutes!' | |
| free_gpu_resources() | |
| kbvqa = KBVQA() | |
| kbvqa.detection_model = st.session_state.detection_model | |
| # Progress bar for model loading | |
| with st.spinner(loading_message): | |
| if not only_reload_detection_model: | |
| progress_bar = st.progress(0) | |
| kbvqa.load_detector(kbvqa.detection_model) | |
| progress_bar.progress(33) | |
| kbvqa.load_caption_model() | |
| free_gpu_resources() | |
| progress_bar.progress(75) | |
| st.text('Almost there :)') | |
| kbvqa.load_fine_tuned_model() | |
| free_gpu_resources() | |
| progress_bar.progress(100) | |
| else: | |
| free_gpu_resources() | |
| progress_bar = st.progress(0) | |
| kbvqa.load_detector(kbvqa.detection_model) | |
| progress_bar.progress(100) | |
| if kbvqa.all_models_loaded: | |
| st.success('Model loaded successfully and ready for inferecne!') | |
| kbvqa.kbvqa_model.eval() | |
| free_gpu_resources() | |
| return kbvqa | |