Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| import bitsandbytes | |
| import accelerate | |
| import scipy | |
| import copy | |
| from PIL import Image | |
| import torch.nn as nn | |
| from my_model.object_detection import detect_and_draw_objects | |
| from my_model.captioner.image_captioning import get_caption | |
| from my_model.utilities import free_gpu_resources | |
| from my_model.KBVQA import KBVQA, prepare_kbvqa_model | |
| import my_model.utilities.st_config as st_config | |
| class ImageHandler: | |
| def analyze_image(image, model, show_processed_image=False): | |
| img = copy.deepcopy(image) | |
| caption = model.get_caption(img) | |
| image_with_boxes, detected_objects_str = model.detect_objects(img) | |
| if show_processed_image: | |
| st.image(image_with_boxes) | |
| return caption, detected_objects_str | |
| def free_gpu_resources(): | |
| # Implementation for freeing GPU resources | |
| free_gpu_resources() | |
| class QuestionAnswering: | |
| def answer_question(image, question, caption, detected_objects_str, model): | |
| answer = model.generate_answer(question, caption, detected_objects_str) | |
| st.image(image) | |
| st.write(caption) | |
| st.write("----------------") | |
| st.write(detected_objects_str) | |
| return answer | |
| class UIComponents: | |
| def display_image_selection(sample_images): | |
| cols = st.columns(len(sample_images)) | |
| for idx, sample_image_path in enumerate(sample_images): | |
| with cols[idx]: | |
| image = Image.open(sample_image_path) | |
| st.image(image, use_column_width=True) | |
| if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'): | |
| st.session_state['current_image'] = image | |
| st.session_state['qa_history'] = [] | |
| st.session_state['analysis_done'] = False | |
| st.session_state['answer_in_progress'] = False | |
| def load_kbvqa_model(detection_model): | |
| """Load KBVQA Model based on the selected detection model.""" | |
| if st.session_state.get('kbvqa') is not None: | |
| st.write("Model already loaded.") | |
| else: | |
| st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model) | |
| if st.session_state['kbvqa']: | |
| st.write("Model is ready for inference.") | |
| return True | |
| return False | |
| def set_model_confidence(detection_model): | |
| """Set the confidence level for the detection model.""" | |
| default_confidence = 0.2 if detection_model == "yolov5" else 0.4 | |
| confidence_level = st.slider( | |
| "Select Detection Confidence Level", | |
| min_value=0.1, | |
| max_value=0.9, | |
| value=default_confidence, | |
| step=0.1 | |
| ) | |
| st.session_state['kbvqa'].detection_confidence = confidence_level | |
| def image_qa_app(kbvqa_model): | |
| """Streamlit app interface for image QA.""" | |
| sample_images = st_config.SAMPLE_IMAGES | |
| UIComponents.display_image_selection(sample_images) | |
| uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"]) | |
| if uploaded_image is not None: | |
| st.session_state['current_image'] = Image.open(uploaded_image) | |
| st.session_state['qa_history'] = [] | |
| st.session_state['analysis_done'] = False | |
| st.session_state['answer_in_progress'] = False | |
| if st.session_state.get('current_image') and not st.session_state.get('analysis_done', False): | |
| if st.button('Analyze Image'): | |
| caption, detected_objects_str = ImageHandler.analyze_image(st.session_state['current_image'], kbvqa_model) | |
| st.session_state['caption'] = caption | |
| st.session_state['detected_objects_str'] = detected_objects_str | |
| st.session_state['analysis_done'] = True | |
| if st.session_state.get('analysis_done', False): | |
| question = st.text_input("Ask a question about this image:") | |
| if st.button('Get Answer'): | |
| answer = QuestionAnswering.answer_question( | |
| st.session_state['current_image'], | |
| question, | |
| st.session_state.get('caption', ''), | |
| st.session_state.get('detected_objects_str', ''), | |
| kbvqa_model | |
| ) | |
| st.session_state['qa_history'].append((question, answer)) | |
| for q, a in st.session_state.get('qa_history', []): | |
| st.text(f"Q: {q}\nA: {a}\n") | |
| def run_inference(): | |
| """Main function to run inference based on the selected method.""" | |
| st.title("Run Inference") | |
| method = st.selectbox( | |
| "Choose a method:", | |
| ["Fine-Tuned Model", "In-Context Learning (n-shots)"], | |
| index=0 | |
| ) | |
| if method == "Fine-Tuned Model": | |
| detection_model = st.selectbox( | |
| "Choose a model for object detection:", | |
| ["yolov5", "detic"], | |
| index=0 | |
| ) | |
| if 'kbvqa' not in st.session_state or st.session_state['detection_model'] != detection_model: | |
| st.session_state['detection_model'] = detection_model | |
| if load_kbvqa_model(detection_model): | |
| set_model_confidence(detection_model) | |
| image_qa_app(st.session_state['kbvqa']) | |
| def main(): | |
| st.sidebar.title("Navigation") | |
| selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"]) | |
| if selection == "Home": | |
| st.title("MultiModal Learning for Knowledge-Based Visual Question Answering") | |
| st.write("Home page content goes here...") | |
| elif selection == "Dissertation Report": | |
| st.title("Dissertation Report") | |
| st.write("Click the link below to view the PDF.") | |
| # Example to display a link to a PDF | |
| st.download_button( | |
| label="Download PDF", | |
| data=open("Files/Dissertation Report.pdf", "rb"), | |
| file_name="example.pdf", | |
| mime="application/octet-stream" | |
| ) | |
| elif selection == "Evaluation Results": | |
| st.title("Evaluation Results") | |
| st.write("This is a Place Holder until the contents are uploaded.") | |
| elif selection == "Dataset Analysis": | |
| st.title("OK-VQA Dataset Analysis") | |
| st.write("This is a Place Holder until the contents are uploaded.") | |
| elif selection == "Run Inference": | |
| run_inference() | |
| if __name__ == "__main__": | |
| main() | |