Spaces:
Sleeping
Sleeping
| # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
| """ | |
| Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5 | |
| release. | |
| Usage - Single-GPU training: | |
| $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended) | |
| $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch | |
| Usage - Multi-GPU DDP training: | |
| $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3 | |
| Models: https://github.com/ultralytics/yolov5/tree/master/models | |
| Datasets: https://github.com/ultralytics/yolov5/tree/master/data | |
| Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data | |
| """ | |
| import argparse | |
| import math | |
| import os | |
| import random | |
| import subprocess | |
| import sys | |
| import time | |
| from copy import deepcopy | |
| from datetime import datetime | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| import torch.nn as nn | |
| import yaml | |
| from torch.optim import lr_scheduler | |
| from tqdm import tqdm | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[1] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
| import segment.val as validate # for end-of-epoch mAP | |
| from models.experimental import attempt_load | |
| from models.yolo import SegmentationModel | |
| from utils.autoanchor import check_anchors | |
| from utils.autobatch import check_train_batch_size | |
| from utils.callbacks import Callbacks | |
| from utils.downloads import attempt_download, is_url | |
| from utils.general import ( | |
| LOGGER, | |
| TQDM_BAR_FORMAT, | |
| check_amp, | |
| check_dataset, | |
| check_file, | |
| check_git_info, | |
| check_git_status, | |
| check_img_size, | |
| check_requirements, | |
| check_suffix, | |
| check_yaml, | |
| colorstr, | |
| get_latest_run, | |
| increment_path, | |
| init_seeds, | |
| intersect_dicts, | |
| labels_to_class_weights, | |
| labels_to_image_weights, | |
| one_cycle, | |
| print_args, | |
| print_mutation, | |
| strip_optimizer, | |
| yaml_save, | |
| ) | |
| from utils.loggers import GenericLogger | |
| from utils.plots import plot_evolve, plot_labels | |
| from utils.segment.dataloaders import create_dataloader | |
| from utils.segment.loss import ComputeLoss | |
| from utils.segment.metrics import KEYS, fitness | |
| from utils.segment.plots import plot_images_and_masks, plot_results_with_masks | |
| from utils.torch_utils import ( | |
| EarlyStopping, | |
| ModelEMA, | |
| de_parallel, | |
| select_device, | |
| smart_DDP, | |
| smart_optimizer, | |
| smart_resume, | |
| torch_distributed_zero_first, | |
| ) | |
| LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html | |
| RANK = int(os.getenv("RANK", -1)) | |
| WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1)) | |
| GIT_INFO = check_git_info() | |
| def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary | |
| ( | |
| save_dir, | |
| epochs, | |
| batch_size, | |
| weights, | |
| single_cls, | |
| evolve, | |
| data, | |
| cfg, | |
| resume, | |
| noval, | |
| nosave, | |
| workers, | |
| freeze, | |
| mask_ratio, | |
| ) = ( | |
| Path(opt.save_dir), | |
| opt.epochs, | |
| opt.batch_size, | |
| opt.weights, | |
| opt.single_cls, | |
| opt.evolve, | |
| opt.data, | |
| opt.cfg, | |
| opt.resume, | |
| opt.noval, | |
| opt.nosave, | |
| opt.workers, | |
| opt.freeze, | |
| opt.mask_ratio, | |
| ) | |
| # callbacks.run('on_pretrain_routine_start') | |
| # Directories | |
| w = save_dir / "weights" # weights dir | |
| (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir | |
| last, best = w / "last.pt", w / "best.pt" | |
| # Hyperparameters | |
| if isinstance(hyp, str): | |
| with open(hyp, errors="ignore") as f: | |
| hyp = yaml.safe_load(f) # load hyps dict | |
| LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items())) | |
| opt.hyp = hyp.copy() # for saving hyps to checkpoints | |
| # Save run settings | |
| if not evolve: | |
| yaml_save(save_dir / "hyp.yaml", hyp) | |
| yaml_save(save_dir / "opt.yaml", vars(opt)) | |
| # Loggers | |
| data_dict = None | |
| if RANK in {-1, 0}: | |
| logger = GenericLogger(opt=opt, console_logger=LOGGER) | |
| # Config | |
| plots = not evolve and not opt.noplots # create plots | |
| overlap = not opt.no_overlap | |
| cuda = device.type != "cpu" | |
| init_seeds(opt.seed + 1 + RANK, deterministic=True) | |
| with torch_distributed_zero_first(LOCAL_RANK): | |
| data_dict = data_dict or check_dataset(data) # check if None | |
| train_path, val_path = data_dict["train"], data_dict["val"] | |
| nc = 1 if single_cls else int(data_dict["nc"]) # number of classes | |
| names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names | |
| is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset | |
| # Model | |
| check_suffix(weights, ".pt") # check weights | |
| pretrained = weights.endswith(".pt") | |
| if pretrained: | |
| with torch_distributed_zero_first(LOCAL_RANK): | |
| weights = attempt_download(weights) # download if not found locally | |
| ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak | |
| model = SegmentationModel(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) | |
| exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys | |
| csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32 | |
| csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect | |
| model.load_state_dict(csd, strict=False) # load | |
| LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report | |
| else: | |
| model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create | |
| amp = check_amp(model) # check AMP | |
| # Freeze | |
| freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze | |
| for k, v in model.named_parameters(): | |
| v.requires_grad = True # train all layers | |
| # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) | |
| if any(x in k for x in freeze): | |
| LOGGER.info(f"freezing {k}") | |
| v.requires_grad = False | |
| # Image size | |
| gs = max(int(model.stride.max()), 32) # grid size (max stride) | |
| imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple | |
| # Batch size | |
| if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size | |
| batch_size = check_train_batch_size(model, imgsz, amp) | |
| logger.update_params({"batch_size": batch_size}) | |
| # loggers.on_params_update({"batch_size": batch_size}) | |
| # Optimizer | |
| nbs = 64 # nominal batch size | |
| accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing | |
| hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay | |
| optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"]) | |
| # Scheduler | |
| if opt.cos_lr: | |
| lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf'] | |
| else: | |
| lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear | |
| scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) | |
| # EMA | |
| ema = ModelEMA(model) if RANK in {-1, 0} else None | |
| # Resume | |
| best_fitness, start_epoch = 0.0, 0 | |
| if pretrained: | |
| if resume: | |
| best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) | |
| del ckpt, csd | |
| # DP mode | |
| if cuda and RANK == -1 and torch.cuda.device_count() > 1: | |
| LOGGER.warning( | |
| "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n" | |
| "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started." | |
| ) | |
| model = torch.nn.DataParallel(model) | |
| # SyncBatchNorm | |
| if opt.sync_bn and cuda and RANK != -1: | |
| model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) | |
| LOGGER.info("Using SyncBatchNorm()") | |
| # Trainloader | |
| train_loader, dataset = create_dataloader( | |
| train_path, | |
| imgsz, | |
| batch_size // WORLD_SIZE, | |
| gs, | |
| single_cls, | |
| hyp=hyp, | |
| augment=True, | |
| cache=None if opt.cache == "val" else opt.cache, | |
| rect=opt.rect, | |
| rank=LOCAL_RANK, | |
| workers=workers, | |
| image_weights=opt.image_weights, | |
| quad=opt.quad, | |
| prefix=colorstr("train: "), | |
| shuffle=True, | |
| mask_downsample_ratio=mask_ratio, | |
| overlap_mask=overlap, | |
| ) | |
| labels = np.concatenate(dataset.labels, 0) | |
| mlc = int(labels[:, 0].max()) # max label class | |
| assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}" | |
| # Process 0 | |
| if RANK in {-1, 0}: | |
| val_loader = create_dataloader( | |
| val_path, | |
| imgsz, | |
| batch_size // WORLD_SIZE * 2, | |
| gs, | |
| single_cls, | |
| hyp=hyp, | |
| cache=None if noval else opt.cache, | |
| rect=True, | |
| rank=-1, | |
| workers=workers * 2, | |
| pad=0.5, | |
| mask_downsample_ratio=mask_ratio, | |
| overlap_mask=overlap, | |
| prefix=colorstr("val: "), | |
| )[0] | |
| if not resume: | |
| if not opt.noautoanchor: | |
| check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor | |
| model.half().float() # pre-reduce anchor precision | |
| if plots: | |
| plot_labels(labels, names, save_dir) | |
| # callbacks.run('on_pretrain_routine_end', labels, names) | |
| # DDP mode | |
| if cuda and RANK != -1: | |
| model = smart_DDP(model) | |
| # Model attributes | |
| nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) | |
| hyp["box"] *= 3 / nl # scale to layers | |
| hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers | |
| hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers | |
| hyp["label_smoothing"] = opt.label_smoothing | |
| model.nc = nc # attach number of classes to model | |
| model.hyp = hyp # attach hyperparameters to model | |
| model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights | |
| model.names = names | |
| # Start training | |
| t0 = time.time() | |
| nb = len(train_loader) # number of batches | |
| nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) | |
| # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training | |
| last_opt_step = -1 | |
| maps = np.zeros(nc) # mAP per class | |
| results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) | |
| scheduler.last_epoch = start_epoch - 1 # do not move | |
| scaler = torch.cuda.amp.GradScaler(enabled=amp) | |
| stopper, stop = EarlyStopping(patience=opt.patience), False | |
| compute_loss = ComputeLoss(model, overlap=overlap) # init loss class | |
| # callbacks.run('on_train_start') | |
| LOGGER.info( | |
| f'Image sizes {imgsz} train, {imgsz} val\n' | |
| f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' | |
| f"Logging results to {colorstr('bold', save_dir)}\n" | |
| f'Starting training for {epochs} epochs...' | |
| ) | |
| for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ | |
| # callbacks.run('on_train_epoch_start') | |
| model.train() | |
| # Update image weights (optional, single-GPU only) | |
| if opt.image_weights: | |
| cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights | |
| iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights | |
| dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx | |
| # Update mosaic border (optional) | |
| # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) | |
| # dataset.mosaic_border = [b - imgsz, -b] # height, width borders | |
| mloss = torch.zeros(4, device=device) # mean losses | |
| if RANK != -1: | |
| train_loader.sampler.set_epoch(epoch) | |
| pbar = enumerate(train_loader) | |
| LOGGER.info( | |
| ("\n" + "%11s" * 8) | |
| % ("Epoch", "GPU_mem", "box_loss", "seg_loss", "obj_loss", "cls_loss", "Instances", "Size") | |
| ) | |
| if RANK in {-1, 0}: | |
| pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar | |
| optimizer.zero_grad() | |
| for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------ | |
| # callbacks.run('on_train_batch_start') | |
| ni = i + nb * epoch # number integrated batches (since train start) | |
| imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 | |
| # Warmup | |
| if ni <= nw: | |
| xi = [0, nw] # x interp | |
| # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) | |
| accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) | |
| for j, x in enumerate(optimizer.param_groups): | |
| # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 | |
| x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)]) | |
| if "momentum" in x: | |
| x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]) | |
| # Multi-scale | |
| if opt.multi_scale: | |
| sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size | |
| sf = sz / max(imgs.shape[2:]) # scale factor | |
| if sf != 1: | |
| ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) | |
| imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) | |
| # Forward | |
| with torch.cuda.amp.autocast(amp): | |
| pred = model(imgs) # forward | |
| loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float()) | |
| if RANK != -1: | |
| loss *= WORLD_SIZE # gradient averaged between devices in DDP mode | |
| if opt.quad: | |
| loss *= 4.0 | |
| # Backward | |
| scaler.scale(loss).backward() | |
| # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html | |
| if ni - last_opt_step >= accumulate: | |
| scaler.unscale_(optimizer) # unscale gradients | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients | |
| scaler.step(optimizer) # optimizer.step | |
| scaler.update() | |
| optimizer.zero_grad() | |
| if ema: | |
| ema.update(model) | |
| last_opt_step = ni | |
| # Log | |
| if RANK in {-1, 0}: | |
| mloss = (mloss * i + loss_items) / (i + 1) # update mean losses | |
| mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB) | |
| pbar.set_description( | |
| ("%11s" * 2 + "%11.4g" * 6) | |
| % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1]) | |
| ) | |
| # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths) | |
| # if callbacks.stop_training: | |
| # return | |
| # Mosaic plots | |
| if plots: | |
| if ni < 3: | |
| plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg") | |
| if ni == 10: | |
| files = sorted(save_dir.glob("train*.jpg")) | |
| logger.log_images(files, "Mosaics", epoch) | |
| # end batch ------------------------------------------------------------------------------------------------ | |
| # Scheduler | |
| lr = [x["lr"] for x in optimizer.param_groups] # for loggers | |
| scheduler.step() | |
| if RANK in {-1, 0}: | |
| # mAP | |
| # callbacks.run('on_train_epoch_end', epoch=epoch) | |
| ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"]) | |
| final_epoch = (epoch + 1 == epochs) or stopper.possible_stop | |
| if not noval or final_epoch: # Calculate mAP | |
| results, maps, _ = validate.run( | |
| data_dict, | |
| batch_size=batch_size // WORLD_SIZE * 2, | |
| imgsz=imgsz, | |
| half=amp, | |
| model=ema.ema, | |
| single_cls=single_cls, | |
| dataloader=val_loader, | |
| save_dir=save_dir, | |
| plots=False, | |
| callbacks=callbacks, | |
| compute_loss=compute_loss, | |
| mask_downsample_ratio=mask_ratio, | |
| overlap=overlap, | |
| ) | |
| # Update best mAP | |
| fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] | |
| stop = stopper(epoch=epoch, fitness=fi) # early stop check | |
| if fi > best_fitness: | |
| best_fitness = fi | |
| log_vals = list(mloss) + list(results) + lr | |
| # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) | |
| # Log val metrics and media | |
| metrics_dict = dict(zip(KEYS, log_vals)) | |
| logger.log_metrics(metrics_dict, epoch) | |
| # Save model | |
| if (not nosave) or (final_epoch and not evolve): # if save | |
| ckpt = { | |
| "epoch": epoch, | |
| "best_fitness": best_fitness, | |
| "model": deepcopy(de_parallel(model)).half(), | |
| "ema": deepcopy(ema.ema).half(), | |
| "updates": ema.updates, | |
| "optimizer": optimizer.state_dict(), | |
| "opt": vars(opt), | |
| "git": GIT_INFO, # {remote, branch, commit} if a git repo | |
| "date": datetime.now().isoformat(), | |
| } | |
| # Save last, best and delete | |
| torch.save(ckpt, last) | |
| if best_fitness == fi: | |
| torch.save(ckpt, best) | |
| if opt.save_period > 0 and epoch % opt.save_period == 0: | |
| torch.save(ckpt, w / f"epoch{epoch}.pt") | |
| logger.log_model(w / f"epoch{epoch}.pt") | |
| del ckpt | |
| # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) | |
| # EarlyStopping | |
| if RANK != -1: # if DDP training | |
| broadcast_list = [stop if RANK == 0 else None] | |
| dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks | |
| if RANK != 0: | |
| stop = broadcast_list[0] | |
| if stop: | |
| break # must break all DDP ranks | |
| # end epoch ---------------------------------------------------------------------------------------------------- | |
| # end training ----------------------------------------------------------------------------------------------------- | |
| if RANK in {-1, 0}: | |
| LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.") | |
| for f in last, best: | |
| if f.exists(): | |
| strip_optimizer(f) # strip optimizers | |
| if f is best: | |
| LOGGER.info(f"\nValidating {f}...") | |
| results, _, _ = validate.run( | |
| data_dict, | |
| batch_size=batch_size // WORLD_SIZE * 2, | |
| imgsz=imgsz, | |
| model=attempt_load(f, device).half(), | |
| iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 | |
| single_cls=single_cls, | |
| dataloader=val_loader, | |
| save_dir=save_dir, | |
| save_json=is_coco, | |
| verbose=True, | |
| plots=plots, | |
| callbacks=callbacks, | |
| compute_loss=compute_loss, | |
| mask_downsample_ratio=mask_ratio, | |
| overlap=overlap, | |
| ) # val best model with plots | |
| if is_coco: | |
| # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) | |
| metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr)) | |
| logger.log_metrics(metrics_dict, epoch) | |
| # callbacks.run('on_train_end', last, best, epoch, results) | |
| # on train end callback using genericLogger | |
| logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs) | |
| if not opt.evolve: | |
| logger.log_model(best, epoch) | |
| if plots: | |
| plot_results_with_masks(file=save_dir / "results.csv") # save results.png | |
| files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))] | |
| files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter | |
| LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") | |
| logger.log_images(files, "Results", epoch + 1) | |
| logger.log_images(sorted(save_dir.glob("val*.jpg")), "Validation", epoch + 1) | |
| torch.cuda.empty_cache() | |
| return results | |
| def parse_opt(known=False): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--weights", type=str, default=ROOT / "yolov5s-seg.pt", help="initial weights path") | |
| parser.add_argument("--cfg", type=str, default="", help="model.yaml path") | |
| parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path") | |
| parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path") | |
| parser.add_argument("--epochs", type=int, default=100, help="total training epochs") | |
| parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch") | |
| parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)") | |
| parser.add_argument("--rect", action="store_true", help="rectangular training") | |
| parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training") | |
| parser.add_argument("--nosave", action="store_true", help="only save final checkpoint") | |
| parser.add_argument("--noval", action="store_true", help="only validate final epoch") | |
| parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor") | |
| parser.add_argument("--noplots", action="store_true", help="save no plot files") | |
| parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations") | |
| parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") | |
| parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk") | |
| parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training") | |
| parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") | |
| parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%") | |
| parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class") | |
| parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer") | |
| parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode") | |
| parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") | |
| parser.add_argument("--project", default=ROOT / "runs/train-seg", help="save to project/name") | |
| parser.add_argument("--name", default="exp", help="save to project/name") | |
| parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") | |
| parser.add_argument("--quad", action="store_true", help="quad dataloader") | |
| parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler") | |
| parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon") | |
| parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)") | |
| parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2") | |
| parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)") | |
| parser.add_argument("--seed", type=int, default=0, help="Global training seed") | |
| parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify") | |
| # Instance Segmentation Args | |
| parser.add_argument("--mask-ratio", type=int, default=4, help="Downsample the truth masks to saving memory") | |
| parser.add_argument("--no-overlap", action="store_true", help="Overlap masks train faster at slightly less mAP") | |
| return parser.parse_known_args()[0] if known else parser.parse_args() | |
| def main(opt, callbacks=Callbacks()): | |
| # Checks | |
| if RANK in {-1, 0}: | |
| print_args(vars(opt)) | |
| check_git_status() | |
| check_requirements(ROOT / "requirements.txt") | |
| # Resume | |
| if opt.resume and not opt.evolve: # resume from specified or most recent last.pt | |
| last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) | |
| opt_yaml = last.parent.parent / "opt.yaml" # train options yaml | |
| opt_data = opt.data # original dataset | |
| if opt_yaml.is_file(): | |
| with open(opt_yaml, errors="ignore") as f: | |
| d = yaml.safe_load(f) | |
| else: | |
| d = torch.load(last, map_location="cpu")["opt"] | |
| opt = argparse.Namespace(**d) # replace | |
| opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate | |
| if is_url(opt_data): | |
| opt.data = check_file(opt_data) # avoid HUB resume auth timeout | |
| else: | |
| opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = ( | |
| check_file(opt.data), | |
| check_yaml(opt.cfg), | |
| check_yaml(opt.hyp), | |
| str(opt.weights), | |
| str(opt.project), | |
| ) # checks | |
| assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified" | |
| if opt.evolve: | |
| if opt.project == str(ROOT / "runs/train-seg"): # if default project name, rename to runs/evolve-seg | |
| opt.project = str(ROOT / "runs/evolve-seg") | |
| opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume | |
| if opt.name == "cfg": | |
| opt.name = Path(opt.cfg).stem # use model.yaml as name | |
| opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) | |
| # DDP mode | |
| device = select_device(opt.device, batch_size=opt.batch_size) | |
| if LOCAL_RANK != -1: | |
| msg = "is not compatible with YOLOv5 Multi-GPU DDP training" | |
| assert not opt.image_weights, f"--image-weights {msg}" | |
| assert not opt.evolve, f"--evolve {msg}" | |
| assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size" | |
| assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE" | |
| assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command" | |
| torch.cuda.set_device(LOCAL_RANK) | |
| device = torch.device("cuda", LOCAL_RANK) | |
| dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") | |
| # Train | |
| if not opt.evolve: | |
| train(opt.hyp, opt, device, callbacks) | |
| # Evolve hyperparameters (optional) | |
| else: | |
| # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) | |
| meta = { | |
| "lr0": (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) | |
| "lrf": (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) | |
| "momentum": (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 | |
| "weight_decay": (1, 0.0, 0.001), # optimizer weight decay | |
| "warmup_epochs": (1, 0.0, 5.0), # warmup epochs (fractions ok) | |
| "warmup_momentum": (1, 0.0, 0.95), # warmup initial momentum | |
| "warmup_bias_lr": (1, 0.0, 0.2), # warmup initial bias lr | |
| "box": (1, 0.02, 0.2), # box loss gain | |
| "cls": (1, 0.2, 4.0), # cls loss gain | |
| "cls_pw": (1, 0.5, 2.0), # cls BCELoss positive_weight | |
| "obj": (1, 0.2, 4.0), # obj loss gain (scale with pixels) | |
| "obj_pw": (1, 0.5, 2.0), # obj BCELoss positive_weight | |
| "iou_t": (0, 0.1, 0.7), # IoU training threshold | |
| "anchor_t": (1, 2.0, 8.0), # anchor-multiple threshold | |
| "anchors": (2, 2.0, 10.0), # anchors per output grid (0 to ignore) | |
| "fl_gamma": (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) | |
| "hsv_h": (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) | |
| "hsv_s": (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) | |
| "hsv_v": (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) | |
| "degrees": (1, 0.0, 45.0), # image rotation (+/- deg) | |
| "translate": (1, 0.0, 0.9), # image translation (+/- fraction) | |
| "scale": (1, 0.0, 0.9), # image scale (+/- gain) | |
| "shear": (1, 0.0, 10.0), # image shear (+/- deg) | |
| "perspective": (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 | |
| "flipud": (1, 0.0, 1.0), # image flip up-down (probability) | |
| "fliplr": (0, 0.0, 1.0), # image flip left-right (probability) | |
| "mosaic": (1, 0.0, 1.0), # image mixup (probability) | |
| "mixup": (1, 0.0, 1.0), # image mixup (probability) | |
| "copy_paste": (1, 0.0, 1.0), | |
| } # segment copy-paste (probability) | |
| with open(opt.hyp, errors="ignore") as f: | |
| hyp = yaml.safe_load(f) # load hyps dict | |
| if "anchors" not in hyp: # anchors commented in hyp.yaml | |
| hyp["anchors"] = 3 | |
| if opt.noautoanchor: | |
| del hyp["anchors"], meta["anchors"] | |
| opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch | |
| # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices | |
| evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv" | |
| if opt.bucket: | |
| # download evolve.csv if exists | |
| subprocess.run( | |
| [ | |
| "gsutil", | |
| "cp", | |
| f"gs://{opt.bucket}/evolve.csv", | |
| str(evolve_csv), | |
| ] | |
| ) | |
| for _ in range(opt.evolve): # generations to evolve | |
| if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate | |
| # Select parent(s) | |
| parent = "single" # parent selection method: 'single' or 'weighted' | |
| x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1) | |
| n = min(5, len(x)) # number of previous results to consider | |
| x = x[np.argsort(-fitness(x))][:n] # top n mutations | |
| w = fitness(x) - fitness(x).min() + 1e-6 # weights (sum > 0) | |
| if parent == "single" or len(x) == 1: | |
| # x = x[random.randint(0, n - 1)] # random selection | |
| x = x[random.choices(range(n), weights=w)[0]] # weighted selection | |
| elif parent == "weighted": | |
| x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination | |
| # Mutate | |
| mp, s = 0.8, 0.2 # mutation probability, sigma | |
| npr = np.random | |
| npr.seed(int(time.time())) | |
| g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 | |
| ng = len(meta) | |
| v = np.ones(ng) | |
| while all(v == 1): # mutate until a change occurs (prevent duplicates) | |
| v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) | |
| for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) | |
| hyp[k] = float(x[i + 12] * v[i]) # mutate | |
| # Constrain to limits | |
| for k, v in meta.items(): | |
| hyp[k] = max(hyp[k], v[1]) # lower limit | |
| hyp[k] = min(hyp[k], v[2]) # upper limit | |
| hyp[k] = round(hyp[k], 5) # significant digits | |
| # Train mutation | |
| results = train(hyp.copy(), opt, device, callbacks) | |
| callbacks = Callbacks() | |
| # Write mutation results | |
| print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket) | |
| # Plot results | |
| plot_evolve(evolve_csv) | |
| LOGGER.info( | |
| f'Hyperparameter evolution finished {opt.evolve} generations\n' | |
| f"Results saved to {colorstr('bold', save_dir)}\n" | |
| f'Usage example: $ python train.py --hyp {evolve_yaml}' | |
| ) | |
| def run(**kwargs): | |
| # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') | |
| opt = parse_opt(True) | |
| for k, v in kwargs.items(): | |
| setattr(opt, k, v) | |
| main(opt) | |
| return opt | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |