Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| from fuzzywuzzy import fuzz | |
| from collections import Counter | |
| from nltk.stem import PorterStemmer | |
| from ast import literal_eval | |
| from typing import Union, List | |
| import streamlit as st | |
| from my_model.config import evaluation_config as config | |
| class KBVQAEvaluator: | |
| """ | |
| A class to evaluate Knowledge-Based Visual Question Answering (KB-VQA) models. | |
| This class provides methods for syntactic and semantic evaluation of the KB-VQA model, | |
| using both exact match and VQA scores. The evaluation results can be saved to an | |
| Excel file for further analysis. | |
| Attributes: | |
| data_path (str): Path to the evaluation data. | |
| use_fuzzy (bool): Flag to determine if fuzzy matching should be used. | |
| stemmer (PorterStemmer): Instance of PorterStemmer for stemming answers. | |
| scores_df (pd.DataFrame): DataFrame containing scores. | |
| df (pd.DataFrame): Main DataFrame containing evaluation data. | |
| vqa_scores (Dict[str, float]): Dictionary to store VQA scores for different model configurations. | |
| exact_match_scores (Dict[str, float]): Dictionary to store exact match scores for different model configurations. | |
| fuzzy_threshold (int): Threshold for fuzzy matching score. | |
| openai_api_key (str): API key for OpenAI GPT-4. | |
| model_names (List[str]): List of model names to be evaluated. | |
| model_configurations (List[str]): List of model configurations to be evaluated. | |
| gpt4_seed (int): Seed for GPT-4 evaluation. | |
| gpt4_max_tokens (int): Maximum tokens for GPT-4 responses. | |
| gpt4_temperature (float): Temperature setting for GPT-4 responses. | |
| """ | |
| def __init__(self): -> None | |
| """ | |
| Initialize the KBVQAEvaluator with the dataset and configuration settings. | |
| Reads data from the specified paths in the configuration and initializes | |
| various attributes required for evaluation. | |
| """ | |
| self.data_path = config.EVALUATION_DATA_PATH | |
| self.use_fuzzy = config.USE_FUZZY | |
| self.stemmer = PorterStemmer() | |
| self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores") | |
| self.df = pd.read_excel(self.data_path, sheet_name="Main Data") | |
| self.vqa_scores = {} | |
| self.exact_match_scores = {} | |
| self.fuzzy_threshold = config.FUZZY_SCORE | |
| self.openai_api_key = config.OPENAI_API_KEY | |
| self.model_names = config.MODEL_NAMES | |
| self.model_configurations = config.MODEL_CONFIGURATIONS # ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5'] | |
| self.gpt4_seed = config.GPT4_SEED | |
| self.gpt4_max_tokens = config.GPT4_MAX_TOKENS | |
| self.gpt4_temperature = config.GPT4_TEMPERATURE | |
| def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]: | |
| """ | |
| Apply Porter Stemmer to either a single string or a list of strings. | |
| Args: | |
| answers (Union[str, List[str]]): A single answer string or a list of answer strings. | |
| Returns: | |
| Union[str, List[str]]: Stemmed version of the input string or list of strings. | |
| """ | |
| if isinstance(answers, list): | |
| return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers] | |
| else: | |
| words = answers.split() | |
| return " ".join(self.stemmer.stem(word.strip()) for word in words) | |
| def calculate_vqa_score(self, ground_truths: List[str], model_answer: str) -> float: | |
| """ | |
| Calculate VQA score based on the number of matching answers, with optional fuzzy matching. | |
| Args: | |
| ground_truths (List[str]): List of ground truth answers. | |
| model_answer (str): Model's answer to be evaluated. | |
| Returns: | |
| float: VQA score based on the number of matches. | |
| """ | |
| if self.use_fuzzy: | |
| fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths) | |
| return min(fuzzy_matches / 3, 1) | |
| else: | |
| count = Counter(ground_truths) | |
| return min(count.get(model_answer, 0) / 3, 1) | |
| def calculate_exact_match_score(self, ground_truths: List[str], model_answer: str) -> int: | |
| """ | |
| Calculate Exact Match score, with optional fuzzy matching. | |
| Args: | |
| ground_truths (List[str]): List of ground truth answers. | |
| model_answer (str): Model's answer to be evaluated. | |
| Returns: | |
| int: Exact match score (1 if there is a match, 0 otherwise). | |
| """ | |
| if self.use_fuzzy: | |
| return int(any(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths)) | |
| else: | |
| return int(model_answer in ground_truths) | |
| def syntactic_evaluation(self) -> None: | |
| """ | |
| Process the DataFrame: stem answers, calculate scores, and store results. | |
| Returns: | |
| None. | |
| """ | |
| self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers) | |
| for name in self.model_names: | |
| for config in self.model_configurations: | |
| full_config = f'{name}_{config}' | |
| self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers) | |
| self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) | |
| self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) | |
| self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2) | |
| self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2) | |
| def create_GPT4_messages_template(self, question: str, ground_truths: List[str], model_answer: str) -> List[dict]: | |
| """ | |
| Create a message list for the GPT-4 API call based on the question, ground truths, and model answer. | |
| Args: | |
| question (str): The question being evaluated. | |
| ground_truths (List[str]): List of ground truth answers. | |
| model_answer (str): Model's answer to be evaluated. | |
| Returns: | |
| List[dict]: Messages formatted for GPT-4 API call. | |
| """ | |
| system_message = { | |
| "role": "system", | |
| "content": """You are an AI trained to evaluate the equivalence of AI-generated answers to a set of ground truth answers for a given question. Upon reviewing a model's answer, determine if it matches the ground truths. Use the following rating system: 1 if you find that the model answer matches more than 25% of the ground truth answers, 2 if you find that the model answer matches only less than 25% of the ground truth answers, and 3 if the model answer is incorrect. Respond in the format below for easy parsing: | |
| Rating: {1/2/3} | |
| """ | |
| } | |
| user_message = { | |
| "role": "user", | |
| "content": f"Question : {question}\nGround Truth: {ground_truths}\nModel's Response: {model_answer}" | |
| } | |
| return [system_message, user_message] | |
| def semantic_evaluation(self) -> None: | |
| """ | |
| Perform semantic evaluation using GPT-4 for each model configuration. | |
| Returns: | |
| None. | |
| """ | |
| openai.api_key = self.openai_api_key | |
| model_configurations_for_semantic_evaluation = self.model_configurations[:2] # considering only main model configs ['caption+detic', 'caption+yolov5'] without ablation, due to the cost involved. | |
| for name in self.model_names: | |
| for config in model_configurations_for_semantic_evaluation: | |
| # Iterate over rows and send requests | |
| for index, row in self.df.iterrows(): | |
| messages = self.create_GPT4_messages_template(row['question'], row['raw_answers'][1:-1], row[name+'_'+config]) | |
| response = openai.ChatCompletion.create(model="gpt-4", messages=messages, max_tokens=self.gpt4_max_tokens, temperature=self.gpt4_temperature, seed=self.gpt4_seed) | |
| evaluation = response["choices"][0]["message"]["content"] | |
| rating = int(evaluation.split('\n')[0].split(":")[1].strip()) | |
| self.df.at[index, f'gpt4_rating_{config}'] = rating | |
| def save_results(self, save_filename: str) -> None: | |
| """ | |
| Save the evaluation results to an Excel file. | |
| Args: | |
| save_filename (str): The filename to save the results. | |
| """ | |
| # Create a DataFrame for the scores | |
| scores_data = { | |
| 'Model Configuration': list(self.vqa_scores.keys()), | |
| 'VQA Score': list(self.vqa_scores.values()), | |
| 'Exact Match Score': list(self.exact_match_scores.values()) | |
| } | |
| scores_df = pd.DataFrame(scores_data) | |
| # Saving the scores DataFrame to an Excel file | |
| with pd.ExcelWriter(save_filename+'.xlsx', engine='openpyxl', mode='w') as writer: | |
| self.df.to_excel(writer, sheet_name='Main Data', index=False) | |
| scores_df.to_excel(writer, sheet_name='Scores', index=False) | |
| def run_evaluation(save: bool = False, save_filename: str = "results") -> None: | |
| """ | |
| Run the full evaluation process using KBVQAEvaluator and save the results to an Excel file. | |
| Args: | |
| save (bool): Whether to save the results to an Excel file. Defaults to False. | |
| save_filename (str): The filename to save the results if save is True. Defaults to "results". | |
| Returns: | |
| None. | |
| """ | |
| # Instantiate the evaluator | |
| evaluator = KBVQAEvaluator() | |
| # Run syntactic evaluation | |
| evaluator.syntactic_evaluation() | |
| # Optionally, run semantic evaluation if required (can be cost-intensive) | |
| evaluator.semantic_evaluation() | |
| if save: | |
| # Save results | |
| evaluator.save_results(save_filename) | |
| # Call run_evaluation() to execute the evaluation process | |
| if __name__ == "__main__": | |
| #run_evaluation(save=True, save_filename="results") | |
| pass |