Spaces:
Sleeping
Sleeping
Update my_model/utilities/gen_utilities.py
Browse files
my_model/utilities/gen_utilities.py
CHANGED
|
@@ -10,15 +10,17 @@ import gc
|
|
| 10 |
import streamlit as st
|
| 11 |
|
| 12 |
|
| 13 |
-
|
| 14 |
-
def show_image(image):
|
| 15 |
"""
|
| 16 |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
| 17 |
-
Handles different types of image inputs (file path, PIL Image, numpy array,
|
| 18 |
|
| 19 |
Args:
|
| 20 |
-
image (str
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
in_jupyter = is_jupyter_notebook()
|
| 24 |
in_colab = is_google_colab()
|
|
@@ -53,7 +55,17 @@ def show_image(image):
|
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
-
def show_image_with_matplotlib(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if isinstance(image, str):
|
| 58 |
image = Image.open(image)
|
| 59 |
elif isinstance(image, np.ndarray):
|
|
@@ -66,7 +78,7 @@ def show_image_with_matplotlib(image):
|
|
| 66 |
plt.show()
|
| 67 |
|
| 68 |
|
| 69 |
-
def is_jupyter_notebook():
|
| 70 |
"""
|
| 71 |
Check if the code is running in a Jupyter notebook.
|
| 72 |
|
|
@@ -85,25 +97,40 @@ def is_jupyter_notebook():
|
|
| 85 |
return False # Default to False if none of the above conditions are met
|
| 86 |
|
| 87 |
|
| 88 |
-
def is_pycharm():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return 'PYCHARM_HOSTED' in os.environ
|
| 90 |
|
| 91 |
|
| 92 |
-
def is_google_colab():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
|
| 94 |
|
| 95 |
|
| 96 |
-
def get_image_path(name, path_type):
|
| 97 |
"""
|
| 98 |
Generates a path for models, images, or data based on the specified type.
|
| 99 |
|
| 100 |
Args:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
Returns:
|
| 105 |
-
|
| 106 |
"""
|
|
|
|
| 107 |
# Get the current working directory (assumed to be inside 'code' folder)
|
| 108 |
current_dir = os.getcwd()
|
| 109 |
|
|
@@ -119,7 +146,7 @@ def get_image_path(name, path_type):
|
|
| 119 |
return full_path
|
| 120 |
|
| 121 |
|
| 122 |
-
def get_model_path(model_name):
|
| 123 |
"""
|
| 124 |
Get the path to the specified model folder.
|
| 125 |
|
|
@@ -129,6 +156,7 @@ def get_model_path(model_name):
|
|
| 129 |
Returns:
|
| 130 |
str: Absolute path to the specified model folder.
|
| 131 |
"""
|
|
|
|
| 132 |
# Directory of the current script
|
| 133 |
current_script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 134 |
|
|
@@ -140,11 +168,62 @@ def get_model_path(model_name):
|
|
| 140 |
|
| 141 |
return model_path
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
"""
|
| 147 |
Clears GPU memory.
|
|
|
|
|
|
|
|
|
|
| 148 |
"""
|
| 149 |
|
| 150 |
if torch.cuda.is_available():
|
|
|
|
| 10 |
import streamlit as st
|
| 11 |
|
| 12 |
|
| 13 |
+
def show_image(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None:
|
|
|
|
| 14 |
"""
|
| 15 |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
| 16 |
+
Handles different types of image inputs (file path, PIL Image, numpy array, PyTorch tensor).
|
| 17 |
|
| 18 |
Args:
|
| 19 |
+
image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display.
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
None
|
| 23 |
+
"""
|
| 24 |
|
| 25 |
in_jupyter = is_jupyter_notebook()
|
| 26 |
in_colab = is_google_colab()
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
+
def show_image_with_matplotlib(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None:
|
| 59 |
+
"""
|
| 60 |
+
Display an image using Matplotlib.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
None
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
if isinstance(image, str):
|
| 70 |
image = Image.open(image)
|
| 71 |
elif isinstance(image, np.ndarray):
|
|
|
|
| 78 |
plt.show()
|
| 79 |
|
| 80 |
|
| 81 |
+
def is_jupyter_notebook() -> bool:
|
| 82 |
"""
|
| 83 |
Check if the code is running in a Jupyter notebook.
|
| 84 |
|
|
|
|
| 97 |
return False # Default to False if none of the above conditions are met
|
| 98 |
|
| 99 |
|
| 100 |
+
def is_pycharm() -> bool:
|
| 101 |
+
"""
|
| 102 |
+
Check if the code is running in PyCharm.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
bool: True if running in PyCharm, False otherwise.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
return 'PYCHARM_HOSTED' in os.environ
|
| 109 |
|
| 110 |
|
| 111 |
+
def is_google_colab() -> bool:
|
| 112 |
+
"""
|
| 113 |
+
Check if the code is running in Google Colab.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
bool: True if running in Google Colab, False otherwise.
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
|
| 120 |
|
| 121 |
|
| 122 |
+
def get_image_path(name: str, path_type: str) -> str:
|
| 123 |
"""
|
| 124 |
Generates a path for models, images, or data based on the specified type.
|
| 125 |
|
| 126 |
Args:
|
| 127 |
+
name (str): The name of the model, image, or data folder/file.
|
| 128 |
+
path_type (str): The type of path needed ('models', 'images', or 'data').
|
| 129 |
|
| 130 |
Returns:
|
| 131 |
+
str: The full path to the specified resource.
|
| 132 |
"""
|
| 133 |
+
|
| 134 |
# Get the current working directory (assumed to be inside 'code' folder)
|
| 135 |
current_dir = os.getcwd()
|
| 136 |
|
|
|
|
| 146 |
return full_path
|
| 147 |
|
| 148 |
|
| 149 |
+
def get_model_path(model_name: str) -> str:
|
| 150 |
"""
|
| 151 |
Get the path to the specified model folder.
|
| 152 |
|
|
|
|
| 156 |
Returns:
|
| 157 |
str: Absolute path to the specified model folder.
|
| 158 |
"""
|
| 159 |
+
|
| 160 |
# Directory of the current script
|
| 161 |
current_script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 162 |
|
|
|
|
| 168 |
|
| 169 |
return model_path
|
| 170 |
|
| 171 |
+
def add_detected_objects_to_dataframe(df: pd.DataFrame, detector_type: str, image_directory: str, detector: object) -> pd.DataFrame:
|
| 172 |
+
"""
|
| 173 |
+
Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column.
|
| 174 |
+
Prints a message every 200 images processed.
|
| 175 |
|
| 176 |
+
Args:
|
| 177 |
+
df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames.
|
| 178 |
+
detector_type (str): The detection model to use ('detic' or 'yolov5').
|
| 179 |
+
image_directory (str): Path to the directory containing images.
|
| 180 |
+
detector (object): An instance of the ObjectDetector class.
|
| 181 |
|
| 182 |
+
Returns:
|
| 183 |
+
pd.DataFrame: The original DataFrame with an additional column 'detected_objects'.
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
# Ensure 'image_name' column exists in the DataFrame
|
| 187 |
+
if 'image_name' not in df.columns:
|
| 188 |
+
raise ValueError("DataFrame must contain an 'image_name' column.")
|
| 189 |
+
|
| 190 |
+
detector.load_model(detector_type)
|
| 191 |
+
|
| 192 |
+
# Initialize a counter for images processed
|
| 193 |
+
images_processed = 0
|
| 194 |
+
|
| 195 |
+
# Function to detect objects for a given image filename
|
| 196 |
+
def detect_objects_for_image(image_name):
|
| 197 |
+
nonlocal images_processed # Use the nonlocal keyword to modify the images_processed variable
|
| 198 |
+
image_path = os.path.join(image_directory, image_name)
|
| 199 |
+
if os.path.exists(image_path):
|
| 200 |
+
|
| 201 |
+
image = detector.process_image(image_path)
|
| 202 |
+
detected_objects_str, _ = detector.detect_objects(image, 0.2)
|
| 203 |
+
images_processed += 1
|
| 204 |
+
|
| 205 |
+
# Print message every 2 images processed
|
| 206 |
+
if images_processed % 200 == 0:
|
| 207 |
+
print(f"Completed {images_processed} images detection")
|
| 208 |
+
|
| 209 |
+
return detected_objects_str
|
| 210 |
+
else:
|
| 211 |
+
images_processed += 1
|
| 212 |
+
return "Image not found"
|
| 213 |
+
|
| 214 |
+
# Apply the function to each row in the DataFrame
|
| 215 |
+
df[detector.model_name] = df['image_name'].apply(detect_objects_for_image)
|
| 216 |
+
|
| 217 |
+
return df
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def free_gpu_resources() -> None:
|
| 222 |
"""
|
| 223 |
Clears GPU memory.
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
None
|
| 227 |
"""
|
| 228 |
|
| 229 |
if torch.cuda.is_available():
|