Spaces:
Sleeping
Sleeping
Update my_model/utilities/gen_utilities.py
Browse files
my_model/utilities/gen_utilities.py
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
from collections import Counter
|
| 3 |
-
import json
|
| 4 |
import os
|
| 5 |
from PIL import Image
|
| 6 |
import numpy as np
|
|
@@ -12,160 +10,6 @@ import gc
|
|
| 12 |
import streamlit as st
|
| 13 |
|
| 14 |
|
| 15 |
-
class VQADataProcessor:
|
| 16 |
-
"""
|
| 17 |
-
A class to process OKVQA dataset.
|
| 18 |
-
|
| 19 |
-
Attributes:
|
| 20 |
-
questions_file_path (str): The file path for the questions JSON file.
|
| 21 |
-
annotations_file_path (str): The file path for the annotations JSON file.
|
| 22 |
-
questions (list): List of questions extracted from the JSON file.
|
| 23 |
-
annotations (list): List of annotations extracted from the JSON file.
|
| 24 |
-
df_questions (DataFrame): DataFrame created from the questions list.
|
| 25 |
-
df_answers (DataFrame): DataFrame created from the annotations list.
|
| 26 |
-
merged_df (DataFrame): DataFrame resulting from merging questions and answers.
|
| 27 |
-
"""
|
| 28 |
-
|
| 29 |
-
def __init__(self, questions_file_path, annotations_file_path):
|
| 30 |
-
"""
|
| 31 |
-
Initializes the VQADataProcessor with file paths for questions and annotations.
|
| 32 |
-
|
| 33 |
-
Parameters:
|
| 34 |
-
questions_file_path (str): The file path for the questions JSON file.
|
| 35 |
-
annotations_file_path (str): The file path for the annotations JSON file.
|
| 36 |
-
"""
|
| 37 |
-
self.questions_file_path = questions_file_path
|
| 38 |
-
self.annotations_file_path = annotations_file_path
|
| 39 |
-
self.questions, self.annotations = self.read_json_files()
|
| 40 |
-
self.df_questions = pd.DataFrame(self.questions)
|
| 41 |
-
self.df_answers = pd.DataFrame(self.annotations)
|
| 42 |
-
self.merged_df = None
|
| 43 |
-
|
| 44 |
-
def read_json_files(self):
|
| 45 |
-
"""
|
| 46 |
-
Reads the JSON files for questions and annotations.
|
| 47 |
-
|
| 48 |
-
Returns:
|
| 49 |
-
tuple: A tuple containing two lists: questions and annotations.
|
| 50 |
-
"""
|
| 51 |
-
with open(self.questions_file_path, 'r') as file:
|
| 52 |
-
data = json.load(file)
|
| 53 |
-
questions = data['questions']
|
| 54 |
-
|
| 55 |
-
with open(self.annotations_file_path, 'r') as file:
|
| 56 |
-
data = json.load(file)
|
| 57 |
-
annotations = data['annotations']
|
| 58 |
-
|
| 59 |
-
return questions, annotations
|
| 60 |
-
|
| 61 |
-
@staticmethod
|
| 62 |
-
def find_most_frequent(my_list):
|
| 63 |
-
"""
|
| 64 |
-
Finds the most frequent item in a list.
|
| 65 |
-
|
| 66 |
-
Parameters:
|
| 67 |
-
my_list (list): A list of items.
|
| 68 |
-
|
| 69 |
-
Returns:
|
| 70 |
-
The most frequent item in the list. Returns None if the list is empty.
|
| 71 |
-
"""
|
| 72 |
-
if not my_list:
|
| 73 |
-
return None
|
| 74 |
-
counter = Counter(my_list)
|
| 75 |
-
most_common = counter.most_common(1)
|
| 76 |
-
return most_common[0][0]
|
| 77 |
-
|
| 78 |
-
def merge_dataframes(self):
|
| 79 |
-
"""
|
| 80 |
-
Merges the questions and answers DataFrames on 'question_id' and 'image_id'.
|
| 81 |
-
"""
|
| 82 |
-
self.merged_df = pd.merge(self.df_questions, self.df_answers, on=['question_id', 'image_id'])
|
| 83 |
-
|
| 84 |
-
def join_words_with_hyphen(self, sentence):
|
| 85 |
-
|
| 86 |
-
return '-'.join(sentence.split())
|
| 87 |
-
|
| 88 |
-
def process_answers(self):
|
| 89 |
-
"""
|
| 90 |
-
Processes the answers by extracting raw and processed answers and finding the most frequent ones.
|
| 91 |
-
"""
|
| 92 |
-
if self.merged_df is not None:
|
| 93 |
-
self.merged_df['raw_answers'] = self.merged_df['answers'].apply(lambda x: [ans['raw_answer'] for ans in x])
|
| 94 |
-
self.merged_df['processed_answers'] = self.merged_df['answers'].apply(
|
| 95 |
-
lambda x: [ans['answer'] for ans in x])
|
| 96 |
-
self.merged_df['most_frequent_raw_answer'] = self.merged_df['raw_answers'].apply(self.find_most_frequent)
|
| 97 |
-
self.merged_df['most_frequent_processed_answer'] = self.merged_df['processed_answers'].apply(
|
| 98 |
-
self.find_most_frequent)
|
| 99 |
-
self.merged_df.drop(columns=['answers'], inplace=True)
|
| 100 |
-
else:
|
| 101 |
-
print("DataFrames have not been merged yet.")
|
| 102 |
-
|
| 103 |
-
# Apply the function to the 'most_frequent_processed_answer' column
|
| 104 |
-
self.merged_df['single_word_answers'] = self.merged_df['most_frequent_processed_answer'].apply(
|
| 105 |
-
self.join_words_with_hyphen)
|
| 106 |
-
|
| 107 |
-
def get_processed_data(self):
|
| 108 |
-
"""
|
| 109 |
-
Retrieves the processed DataFrame.
|
| 110 |
-
|
| 111 |
-
Returns:
|
| 112 |
-
DataFrame: The processed DataFrame. Returns None if the DataFrame is empty or not processed.
|
| 113 |
-
"""
|
| 114 |
-
if self.merged_df is not None:
|
| 115 |
-
return self.merged_df
|
| 116 |
-
else:
|
| 117 |
-
print("DataFrame is empty or not processed yet.")
|
| 118 |
-
return None
|
| 119 |
-
|
| 120 |
-
def save_to_csv(self, df, saved_file_name):
|
| 121 |
-
|
| 122 |
-
if saved_file_name is not None:
|
| 123 |
-
if ".csv" not in saved_file_name:
|
| 124 |
-
df.to_csv(os.path.join(saved_file_name, ".csv"), index=None)
|
| 125 |
-
|
| 126 |
-
else:
|
| 127 |
-
df.to_csv(saved_file_name, index=None)
|
| 128 |
-
|
| 129 |
-
else:
|
| 130 |
-
df.to_csv("data.csv", index=None)
|
| 131 |
-
|
| 132 |
-
def display_dataframe(self):
|
| 133 |
-
"""
|
| 134 |
-
Displays the processed DataFrame.
|
| 135 |
-
"""
|
| 136 |
-
if self.merged_df is not None:
|
| 137 |
-
print(self.merged_df)
|
| 138 |
-
else:
|
| 139 |
-
print("DataFrame is empty.")
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def process_okvqa_dataset(questions_file_path, annotations_file_path, save_to_csv=False, saved_file_name=None):
|
| 143 |
-
"""
|
| 144 |
-
Processes the OK-VQA dataset given the file paths for questions and annotations.
|
| 145 |
-
|
| 146 |
-
Parameters:
|
| 147 |
-
questions_file_path (str): The file path for the questions JSON file.
|
| 148 |
-
annotations_file_path (str): The file path for the annotations JSON file.
|
| 149 |
-
|
| 150 |
-
Returns:
|
| 151 |
-
DataFrame: The processed DataFrame containing merged and processed VQA data.
|
| 152 |
-
"""
|
| 153 |
-
# Create an instance of the class
|
| 154 |
-
processor = VQADataProcessor(questions_file_path, annotations_file_path)
|
| 155 |
-
|
| 156 |
-
# Process the data
|
| 157 |
-
processor.merge_dataframes()
|
| 158 |
-
processor.process_answers()
|
| 159 |
-
|
| 160 |
-
# Retrieve the processed DataFrame
|
| 161 |
-
processed_data = processor.get_processed_data()
|
| 162 |
-
|
| 163 |
-
if save_to_csv:
|
| 164 |
-
processor.save_to_csv(processed_data, saved_file_name)
|
| 165 |
-
|
| 166 |
-
return processed_data
|
| 167 |
-
|
| 168 |
-
|
| 169 |
def show_image(image):
|
| 170 |
"""
|
| 171 |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
|
@@ -307,11 +151,3 @@ def free_gpu_resources():
|
|
| 307 |
gc.collect()
|
| 308 |
gc.collect()
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
if __name__ == "__main__":
|
| 315 |
-
pass
|
| 316 |
-
#val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_val.csv")
|
| 317 |
-
#train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_train.csv")
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
|
|
|
| 10 |
import streamlit as st
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def show_image(image):
|
| 14 |
"""
|
| 15 |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
|
|
|
| 151 |
gc.collect()
|
| 152 |
gc.collect()
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|