Spaces:
Runtime error
Runtime error
Xu Ma
commited on
Commit
·
c89c010
1
Parent(s):
1b90f20
update
Browse files- app.py +207 -138
- config/base.yaml +19 -3
- main.py +339 -0
app.py
CHANGED
|
@@ -9,124 +9,193 @@ import torch
|
|
| 9 |
import yaml
|
| 10 |
from PIL import Image
|
| 11 |
from subprocess import call
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
)
|
| 28 |
-
parser.add_argument(
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
)
|
| 35 |
-
parser.add_argument(
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
)
|
| 42 |
-
parser.add_argument(
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
)
|
| 49 |
-
parser.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
|
| 132 |
def run_cmd(command):
|
|
@@ -150,25 +219,25 @@ run_cmd("python main.py --config config/base.yaml --experiment experiment_5x1 --
|
|
| 150 |
|
| 151 |
|
| 152 |
|
| 153 |
-
# yaml文件解析
|
| 154 |
-
def yaml_parse(file_path):
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
# yaml csv 文件解析
|
| 159 |
-
def yaml_csv(file_path, file_tag):
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
|
| 174 |
def main(args):
|
|
@@ -223,7 +292,7 @@ def main(args):
|
|
| 223 |
|
| 224 |
# Interface
|
| 225 |
gr.Interface(
|
| 226 |
-
fn=
|
| 227 |
inputs=inputs,
|
| 228 |
outputs=[outputs, outputs02],
|
| 229 |
title=title,
|
|
|
|
| 9 |
import yaml
|
| 10 |
from PIL import Image
|
| 11 |
from subprocess import call
|
| 12 |
+
import pydiffvg
|
| 13 |
+
import torch
|
| 14 |
+
import cv2
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import random
|
| 17 |
+
import argparse
|
| 18 |
+
import math
|
| 19 |
+
import errno
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
import yaml
|
| 22 |
+
from easydict import EasyDict as edict
|
| 23 |
+
from main import main_func
|
| 24 |
+
|
| 25 |
+
def parse_args():
|
| 26 |
+
parser = argparse.ArgumentParser()
|
| 27 |
+
parser.add_argument('--debug', action='store_true', default=False)
|
| 28 |
+
parser.add_argument("--config", default="config/base.yaml", type=str)
|
| 29 |
+
parser.add_argument("--experiment", type=str)
|
| 30 |
+
parser.add_argument("--seed", type=int)
|
| 31 |
+
parser.add_argument("--target", type=str, help="target image path")
|
| 32 |
+
parser.add_argument('--log_dir', metavar='DIR', default="log/debug")
|
| 33 |
+
parser.add_argument('--initial', type=str, default="random", choices=['random', 'circle'])
|
| 34 |
+
parser.add_argument('--signature', nargs='+', type=str)
|
| 35 |
+
parser.add_argument('--seginit', nargs='+', type=str)
|
| 36 |
+
parser.add_argument("--num_segments", type=int, default=4)
|
| 37 |
+
# parser.add_argument("--num_paths", type=str, default="1,1,1")
|
| 38 |
+
# parser.add_argument("--num_iter", type=int, default=500)
|
| 39 |
+
# parser.add_argument('--free', action='store_true')
|
| 40 |
+
# Please ensure that image resolution is divisible by pool_size; otherwise the performance would drop a lot.
|
| 41 |
+
# parser.add_argument('--pool_size', type=int, default=40, help="the pooled image size for next path initialization")
|
| 42 |
+
# parser.add_argument('--save_loss', action='store_true')
|
| 43 |
+
# parser.add_argument('--save_init', action='store_true')
|
| 44 |
+
# parser.add_argument('--save_image', action='store_true')
|
| 45 |
+
# parser.add_argument('--save_video', action='store_true')
|
| 46 |
+
# parser.add_argument('--print_weight', action='store_true')
|
| 47 |
+
# parser.add_argument('--circle_init_radius', type=float)
|
| 48 |
+
cfg = edict()
|
| 49 |
+
args = parser.parse_args()
|
| 50 |
+
cfg.debug = args.debug
|
| 51 |
+
cfg.config = args.config
|
| 52 |
+
cfg.experiment = args.experiment
|
| 53 |
+
cfg.seed = args.seed
|
| 54 |
+
cfg.target = args.target
|
| 55 |
+
cfg.log_dir = args.log_dir
|
| 56 |
+
cfg.initial = args.initial
|
| 57 |
+
cfg.signature = args.signature
|
| 58 |
+
# set cfg num_segments in command
|
| 59 |
+
cfg.num_segments = args.num_segments
|
| 60 |
+
if args.seginit is not None:
|
| 61 |
+
cfg.seginit = edict()
|
| 62 |
+
cfg.seginit.type = args.seginit[0]
|
| 63 |
+
if cfg.seginit.type == 'circle':
|
| 64 |
+
cfg.seginit.radius = float(args.seginit[1])
|
| 65 |
+
return cfg
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def run_live(img, experiment_id):
|
| 72 |
+
main_func(img, experiment_id)
|
| 73 |
+
return 0, 1
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# ROOT_PATH = sys.path[0] # 根目录
|
| 84 |
+
# # 模型路径
|
| 85 |
+
# model_path = "ultralytics/yolov5"
|
| 86 |
+
# # 模型名称临时变量
|
| 87 |
+
# model_name_tmp = ""
|
| 88 |
+
# # 设备临时变量
|
| 89 |
+
# device_tmp = ""
|
| 90 |
+
# # 文件后缀
|
| 91 |
+
# suffix_list = [".csv", ".yaml"]
|
| 92 |
+
# def parse_args(known=False):
|
| 93 |
+
# parser = argparse.ArgumentParser(description="Gradio LIVE")
|
| 94 |
+
# parser.add_argument(
|
| 95 |
+
# "--model_name", "-mn", default="yolov5s", type=str, help="model name"
|
| 96 |
+
# )
|
| 97 |
+
# parser.add_argument(
|
| 98 |
+
# "--model_cfg",
|
| 99 |
+
# "-mc",
|
| 100 |
+
# default="./model_config/model_name_p5_all.yaml",
|
| 101 |
+
# type=str,
|
| 102 |
+
# help="model config",
|
| 103 |
+
# )
|
| 104 |
+
# parser.add_argument(
|
| 105 |
+
# "--cls_name",
|
| 106 |
+
# "-cls",
|
| 107 |
+
# default="./cls_name/cls_name.yaml",
|
| 108 |
+
# type=str,
|
| 109 |
+
# help="cls name",
|
| 110 |
+
# )
|
| 111 |
+
# parser.add_argument(
|
| 112 |
+
# "--nms_conf",
|
| 113 |
+
# "-conf",
|
| 114 |
+
# default=0.5,
|
| 115 |
+
# type=float,
|
| 116 |
+
# help="model NMS confidence threshold",
|
| 117 |
+
# )
|
| 118 |
+
# parser.add_argument(
|
| 119 |
+
# "--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
|
| 120 |
+
# )
|
| 121 |
+
#
|
| 122 |
+
# parser.add_argument(
|
| 123 |
+
# "--label_dnt_show",
|
| 124 |
+
# "-lds",
|
| 125 |
+
# action="store_false",
|
| 126 |
+
# default=True,
|
| 127 |
+
# help="label show",
|
| 128 |
+
# )
|
| 129 |
+
# parser.add_argument(
|
| 130 |
+
# "--device",
|
| 131 |
+
# "-dev",
|
| 132 |
+
# default="cpu",
|
| 133 |
+
# type=str,
|
| 134 |
+
# help="cuda or cpu, hugging face only cpu",
|
| 135 |
+
# )
|
| 136 |
+
# parser.add_argument(
|
| 137 |
+
# "--inference_size", "-isz", default=640, type=int, help="model inference size"
|
| 138 |
+
# )
|
| 139 |
+
#
|
| 140 |
+
# args = parser.parse_known_args()[0] if known else parser.parse_args()
|
| 141 |
+
# return args
|
| 142 |
+
# # 模型加载
|
| 143 |
+
# def model_loading(model_name, device):
|
| 144 |
+
#
|
| 145 |
+
# # 加载本地模型
|
| 146 |
+
# model = torch.hub.load(model_path, model_name, force_reload=True, device=device)
|
| 147 |
+
#
|
| 148 |
+
# return model
|
| 149 |
+
# # 检测信息
|
| 150 |
+
# def export_json(results, model, img_size):
|
| 151 |
+
#
|
| 152 |
+
# return [
|
| 153 |
+
# [
|
| 154 |
+
# {
|
| 155 |
+
# "id": int(i),
|
| 156 |
+
# "class": int(result[i][5]),
|
| 157 |
+
# "class_name": model.model.names[int(result[i][5])],
|
| 158 |
+
# "normalized_box": {
|
| 159 |
+
# "x0": round(result[i][:4].tolist()[0], 6),
|
| 160 |
+
# "y0": round(result[i][:4].tolist()[1], 6),
|
| 161 |
+
# "x1": round(result[i][:4].tolist()[2], 6),
|
| 162 |
+
# "y1": round(result[i][:4].tolist()[3], 6),
|
| 163 |
+
# },
|
| 164 |
+
# "confidence": round(float(result[i][4]), 2),
|
| 165 |
+
# "fps": round(1000 / float(results.t[1]), 2),
|
| 166 |
+
# "width": img_size[0],
|
| 167 |
+
# "height": img_size[1],
|
| 168 |
+
# }
|
| 169 |
+
# for i in range(len(result))
|
| 170 |
+
# ]
|
| 171 |
+
# for result in results.xyxyn
|
| 172 |
+
# ]
|
| 173 |
+
# def yolo_det(img, experiment_id, device=None, model_name=None, inference_size=None, conf=None, iou=None, label_opt=None, model_cls=None):
|
| 174 |
+
#
|
| 175 |
+
# global model, model_name_tmp, device_tmp
|
| 176 |
+
#
|
| 177 |
+
# if model_name_tmp != model_name:
|
| 178 |
+
# # 模型判断,避免反复加载
|
| 179 |
+
# model_name_tmp = model_name
|
| 180 |
+
# model = model_loading(model_name_tmp, device)
|
| 181 |
+
# elif device_tmp != device:
|
| 182 |
+
# device_tmp = device
|
| 183 |
+
# model = model_loading(model_name_tmp, device)
|
| 184 |
+
#
|
| 185 |
+
# # -----------模型调参-----------
|
| 186 |
+
# model.conf = conf # NMS 置信度阈值
|
| 187 |
+
# model.iou = iou # NMS IOU阈值
|
| 188 |
+
# model.max_det = 1000 # 最大检测框数
|
| 189 |
+
# model.classes = model_cls # 模型类别
|
| 190 |
+
#
|
| 191 |
+
# results = model(img, size=inference_size) # 检测
|
| 192 |
+
# results.render(labels=label_opt) # 渲染
|
| 193 |
+
#
|
| 194 |
+
# det_img = Image.fromarray(results.imgs[0]) # 检测图片
|
| 195 |
+
#
|
| 196 |
+
# det_json = export_json(results, model, img.size)[0] # 检测信息
|
| 197 |
+
#
|
| 198 |
+
# return det_img, det_json
|
| 199 |
|
| 200 |
|
| 201 |
def run_cmd(command):
|
|
|
|
| 219 |
|
| 220 |
|
| 221 |
|
| 222 |
+
# # yaml文件解析
|
| 223 |
+
# def yaml_parse(file_path):
|
| 224 |
+
# return yaml.safe_load(open(file_path, "r", encoding="utf-8").read())
|
| 225 |
+
#
|
| 226 |
+
#
|
| 227 |
+
# # yaml csv 文件解析
|
| 228 |
+
# def yaml_csv(file_path, file_tag):
|
| 229 |
+
# file_suffix = Path(file_path).suffix
|
| 230 |
+
# if file_suffix == suffix_list[0]:
|
| 231 |
+
# # 模型名称
|
| 232 |
+
# file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
|
| 233 |
+
# elif file_suffix == suffix_list[1]:
|
| 234 |
+
# # 模型名称
|
| 235 |
+
# file_names = yaml_parse(file_path).get(file_tag) # yaml版
|
| 236 |
+
# else:
|
| 237 |
+
# print(f"{file_path}格式不正确!程序退出!")
|
| 238 |
+
# sys.exit()
|
| 239 |
+
#
|
| 240 |
+
# return file_names
|
| 241 |
|
| 242 |
|
| 243 |
def main(args):
|
|
|
|
| 292 |
|
| 293 |
# Interface
|
| 294 |
gr.Interface(
|
| 295 |
+
fn=run_live,
|
| 296 |
inputs=inputs,
|
| 297 |
outputs=[outputs, outputs02],
|
| 298 |
title=title,
|
config/base.yaml
CHANGED
|
@@ -5,10 +5,10 @@ default:
|
|
| 5 |
type: circle
|
| 6 |
radius: 5
|
| 7 |
save:
|
| 8 |
-
init:
|
| 9 |
-
image:
|
| 10 |
output: true
|
| 11 |
-
video:
|
| 12 |
loss: false
|
| 13 |
trainable:
|
| 14 |
bg: False
|
|
@@ -66,3 +66,19 @@ experiment_1357:
|
|
| 66 |
type: list
|
| 67 |
schedule: [1, 3, 5, 7]
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
type: circle
|
| 6 |
radius: 5
|
| 7 |
save:
|
| 8 |
+
init: false
|
| 9 |
+
image: false
|
| 10 |
output: true
|
| 11 |
+
video: false
|
| 12 |
loss: false
|
| 13 |
trainable:
|
| 14 |
bg: False
|
|
|
|
| 66 |
type: list
|
| 67 |
schedule: [1, 3, 5, 7]
|
| 68 |
|
| 69 |
+
|
| 70 |
+
experiment_exp2_256:
|
| 71 |
+
path_schedule:
|
| 72 |
+
type: exp
|
| 73 |
+
base: 2
|
| 74 |
+
max_path: 256
|
| 75 |
+
max_path_per_iter: 32
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
experiment_exp2_128:
|
| 79 |
+
path_schedule:
|
| 80 |
+
type: exp
|
| 81 |
+
base: 2
|
| 82 |
+
max_path: 128
|
| 83 |
+
max_path_per_iter: 32
|
| 84 |
+
|
main.py
CHANGED
|
@@ -344,6 +344,345 @@ class linear_decay_lrlambda_f(object):
|
|
| 344 |
lr = lr_s * (1-r) + lr_e * r
|
| 345 |
return lr
|
| 346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
if __name__ == "__main__":
|
| 349 |
|
|
|
|
| 344 |
lr = lr_s * (1-r) + lr_e * r
|
| 345 |
return lr
|
| 346 |
|
| 347 |
+
def main_func(target, experiment):
|
| 348 |
+
cfg_arg = parse_args()
|
| 349 |
+
with open(cfg_arg.config, 'r') as f:
|
| 350 |
+
cfg = yaml.load(f, Loader=yaml.FullLoader)
|
| 351 |
+
cfg_default = edict(cfg['default'])
|
| 352 |
+
cfg = edict(cfg[cfg_arg.experiment])
|
| 353 |
+
cfg.update(cfg_default)
|
| 354 |
+
cfg.update(cfg_arg)
|
| 355 |
+
cfg.exid = get_experiment_id(cfg.debug)
|
| 356 |
+
|
| 357 |
+
cfg.experiment_dir = \
|
| 358 |
+
osp.join(cfg.log_dir, '{}_{}'.format(cfg.exid, '_'.join(cfg.signature)))
|
| 359 |
+
cfg.target = target
|
| 360 |
+
cfg.experiment = experiment
|
| 361 |
+
|
| 362 |
+
configfile = osp.join(cfg.experiment_dir, 'config.yaml')
|
| 363 |
+
check_and_create_dir(configfile)
|
| 364 |
+
with open(osp.join(configfile), 'w') as f:
|
| 365 |
+
yaml.dump(edict_2_dict(cfg), f)
|
| 366 |
+
|
| 367 |
+
# Use GPU if available
|
| 368 |
+
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
| 369 |
+
device = pydiffvg.get_device()
|
| 370 |
+
|
| 371 |
+
gt = np.array(PIL.Image.open(cfg.target))
|
| 372 |
+
print(f"Input image shape is: {gt.shape}")
|
| 373 |
+
if len(gt.shape) == 2:
|
| 374 |
+
print("Converting the gray-scale image to RGB.")
|
| 375 |
+
gt = gt.unsqueeze(dim=-1).repeat(1,1,3)
|
| 376 |
+
if gt.shape[2] == 4:
|
| 377 |
+
print("Input image includes alpha channel, simply dropout alpha channel.")
|
| 378 |
+
gt = gt[:, :, :3]
|
| 379 |
+
gt = (gt/255).astype(np.float32)
|
| 380 |
+
gt = torch.FloatTensor(gt).permute(2, 0, 1)[None].to(device)
|
| 381 |
+
if cfg.use_ycrcb:
|
| 382 |
+
gt = ycrcb_conversion(gt)
|
| 383 |
+
h, w = gt.shape[2:]
|
| 384 |
+
|
| 385 |
+
path_schedule = get_path_schedule(**cfg.path_schedule)
|
| 386 |
+
|
| 387 |
+
if cfg.seed is not None:
|
| 388 |
+
random.seed(cfg.seed)
|
| 389 |
+
npr.seed(cfg.seed)
|
| 390 |
+
torch.manual_seed(cfg.seed)
|
| 391 |
+
render = pydiffvg.RenderFunction.apply
|
| 392 |
+
|
| 393 |
+
shapes_record, shape_groups_record = [], []
|
| 394 |
+
|
| 395 |
+
region_loss = None
|
| 396 |
+
loss_matrix = []
|
| 397 |
+
|
| 398 |
+
para_point, para_color = {}, {}
|
| 399 |
+
if cfg.trainable.stroke:
|
| 400 |
+
para_stroke_width, para_stroke_color = {}, {}
|
| 401 |
+
|
| 402 |
+
pathn_record = []
|
| 403 |
+
# Background
|
| 404 |
+
if cfg.trainable.bg:
|
| 405 |
+
# meancolor = gt.mean([2, 3])[0]
|
| 406 |
+
para_bg = torch.tensor([1., 1., 1.], requires_grad=True, device=device)
|
| 407 |
+
else:
|
| 408 |
+
if cfg.use_ycrcb:
|
| 409 |
+
para_bg = torch.tensor([219/255, 0, 0], requires_grad=False, device=device)
|
| 410 |
+
else:
|
| 411 |
+
para_bg = torch.tensor([1., 1., 1.], requires_grad=False, device=device)
|
| 412 |
+
|
| 413 |
+
##################
|
| 414 |
+
# start_training #
|
| 415 |
+
##################
|
| 416 |
+
|
| 417 |
+
loss_weight = None
|
| 418 |
+
loss_weight_keep = 0
|
| 419 |
+
if cfg.coord_init.type == 'naive':
|
| 420 |
+
pos_init_method = naive_coord_init(
|
| 421 |
+
para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
|
| 422 |
+
elif cfg.coord_init.type == 'sparse':
|
| 423 |
+
pos_init_method = sparse_coord_init(
|
| 424 |
+
para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
|
| 425 |
+
elif cfg.coord_init.type == 'random':
|
| 426 |
+
pos_init_method = random_coord_init([h, w])
|
| 427 |
+
else:
|
| 428 |
+
raise ValueError
|
| 429 |
+
|
| 430 |
+
lrlambda_f = linear_decay_lrlambda_f(cfg.num_iter, 0.4)
|
| 431 |
+
optim_schedular_dict = {}
|
| 432 |
+
|
| 433 |
+
for path_idx, pathn in enumerate(path_schedule):
|
| 434 |
+
loss_list = []
|
| 435 |
+
print("=> Adding [{}] paths, [{}] ...".format(pathn, cfg.seginit.type))
|
| 436 |
+
pathn_record.append(pathn)
|
| 437 |
+
pathn_record_str = '-'.join([str(i) for i in pathn_record])
|
| 438 |
+
|
| 439 |
+
# initialize new shapes related stuffs.
|
| 440 |
+
if cfg.trainable.stroke:
|
| 441 |
+
shapes, shape_groups, point_var, color_var, stroke_width_var, stroke_color_var = init_shapes(
|
| 442 |
+
pathn, cfg.num_segments, (h, w),
|
| 443 |
+
cfg.seginit, len(shapes_record),
|
| 444 |
+
pos_init_method,
|
| 445 |
+
trainable_stroke=True,
|
| 446 |
+
gt=gt, )
|
| 447 |
+
para_stroke_width[path_idx] = stroke_width_var
|
| 448 |
+
para_stroke_color[path_idx] = stroke_color_var
|
| 449 |
+
else:
|
| 450 |
+
shapes, shape_groups, point_var, color_var = init_shapes(
|
| 451 |
+
pathn, cfg.num_segments, (h, w),
|
| 452 |
+
cfg.seginit, len(shapes_record),
|
| 453 |
+
pos_init_method,
|
| 454 |
+
trainable_stroke=False,
|
| 455 |
+
gt=gt, )
|
| 456 |
+
|
| 457 |
+
shapes_record += shapes
|
| 458 |
+
shape_groups_record += shape_groups
|
| 459 |
+
|
| 460 |
+
if cfg.save.init:
|
| 461 |
+
filename = os.path.join(
|
| 462 |
+
cfg.experiment_dir, "svg-init",
|
| 463 |
+
"{}-init.svg".format(pathn_record_str))
|
| 464 |
+
check_and_create_dir(filename)
|
| 465 |
+
pydiffvg.save_svg(
|
| 466 |
+
filename, w, h,
|
| 467 |
+
shapes_record, shape_groups_record)
|
| 468 |
+
|
| 469 |
+
para = {}
|
| 470 |
+
if (cfg.trainable.bg) and (path_idx == 0):
|
| 471 |
+
para['bg'] = [para_bg]
|
| 472 |
+
para['point'] = point_var
|
| 473 |
+
para['color'] = color_var
|
| 474 |
+
if cfg.trainable.stroke:
|
| 475 |
+
para['stroke_width'] = stroke_width_var
|
| 476 |
+
para['stroke_color'] = stroke_color_var
|
| 477 |
+
|
| 478 |
+
pg = [{'params' : para[ki], 'lr' : cfg.lr_base[ki]} for ki in sorted(para.keys())]
|
| 479 |
+
optim = torch.optim.Adam(pg)
|
| 480 |
+
|
| 481 |
+
if cfg.trainable.record:
|
| 482 |
+
scheduler = LambdaLR(
|
| 483 |
+
optim, lr_lambda=lrlambda_f, last_epoch=-1)
|
| 484 |
+
else:
|
| 485 |
+
scheduler = LambdaLR(
|
| 486 |
+
optim, lr_lambda=lrlambda_f, last_epoch=cfg.num_iter)
|
| 487 |
+
optim_schedular_dict[path_idx] = (optim, scheduler)
|
| 488 |
+
|
| 489 |
+
# Inner loop training
|
| 490 |
+
t_range = tqdm(range(cfg.num_iter))
|
| 491 |
+
for t in t_range:
|
| 492 |
+
|
| 493 |
+
for _, (optim, _) in optim_schedular_dict.items():
|
| 494 |
+
optim.zero_grad()
|
| 495 |
+
|
| 496 |
+
# Forward pass: render the image.
|
| 497 |
+
scene_args = pydiffvg.RenderFunction.serialize_scene(
|
| 498 |
+
w, h, shapes_record, shape_groups_record)
|
| 499 |
+
img = render(w, h, 2, 2, t, None, *scene_args)
|
| 500 |
+
|
| 501 |
+
# Compose img with white background
|
| 502 |
+
img = img[:, :, 3:4] * img[:, :, :3] + \
|
| 503 |
+
para_bg * (1 - img[:, :, 3:4])
|
| 504 |
+
|
| 505 |
+
if cfg.save.video:
|
| 506 |
+
filename = os.path.join(
|
| 507 |
+
cfg.experiment_dir, "video-png",
|
| 508 |
+
"{}-iter{}.png".format(pathn_record_str, t))
|
| 509 |
+
check_and_create_dir(filename)
|
| 510 |
+
if cfg.use_ycrcb:
|
| 511 |
+
imshow = ycrcb_conversion(
|
| 512 |
+
img, format='[2D x 3]', reverse=True).detach().cpu()
|
| 513 |
+
else:
|
| 514 |
+
imshow = img.detach().cpu()
|
| 515 |
+
pydiffvg.imwrite(imshow, filename, gamma=gamma)
|
| 516 |
+
|
| 517 |
+
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
|
| 518 |
+
|
| 519 |
+
if cfg.use_ycrcb:
|
| 520 |
+
color_reweight = torch.FloatTensor([255/219, 255/224, 255/255]).to(device)
|
| 521 |
+
loss = ((x-gt)*(color_reweight.view(1, -1, 1, 1)))**2
|
| 522 |
+
else:
|
| 523 |
+
loss = ((x-gt)**2)
|
| 524 |
+
|
| 525 |
+
if cfg.loss.use_l1_loss:
|
| 526 |
+
loss = abs(x-gt)
|
| 527 |
+
|
| 528 |
+
if cfg.loss.use_distance_weighted_loss:
|
| 529 |
+
if cfg.use_ycrcb:
|
| 530 |
+
raise ValueError
|
| 531 |
+
shapes_forsdf = copy.deepcopy(shapes)
|
| 532 |
+
shape_groups_forsdf = copy.deepcopy(shape_groups)
|
| 533 |
+
for si in shapes_forsdf:
|
| 534 |
+
si.stroke_width = torch.FloatTensor([0]).to(device)
|
| 535 |
+
for sg_idx, sgi in enumerate(shape_groups_forsdf):
|
| 536 |
+
sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(device)
|
| 537 |
+
sgi.shape_ids = torch.LongTensor([sg_idx]).to(device)
|
| 538 |
+
|
| 539 |
+
sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
|
| 540 |
+
w, h, shapes_forsdf, shape_groups_forsdf)
|
| 541 |
+
with torch.no_grad():
|
| 542 |
+
im_forsdf = render(w, h, 2, 2, 0, None, *sargs_forsdf)
|
| 543 |
+
# use alpha channel is a trick to get 0-1 image
|
| 544 |
+
im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
|
| 545 |
+
loss_weight = get_sdf(im_forsdf, normalize='to1')
|
| 546 |
+
loss_weight += loss_weight_keep
|
| 547 |
+
loss_weight = np.clip(loss_weight, 0, 1)
|
| 548 |
+
loss_weight = torch.FloatTensor(loss_weight).to(device)
|
| 549 |
+
|
| 550 |
+
if cfg.save.loss:
|
| 551 |
+
save_loss = loss.squeeze(dim=0).mean(dim=0,keepdim=False).cpu().detach().numpy()
|
| 552 |
+
save_weight = loss_weight.cpu().detach().numpy()
|
| 553 |
+
save_weighted_loss = save_loss*save_weight
|
| 554 |
+
# normalize to [0,1]
|
| 555 |
+
save_loss = (save_loss - np.min(save_loss))/np.ptp(save_loss)
|
| 556 |
+
save_weight = (save_weight - np.min(save_weight))/np.ptp(save_weight)
|
| 557 |
+
save_weighted_loss = (save_weighted_loss - np.min(save_weighted_loss))/np.ptp(save_weighted_loss)
|
| 558 |
+
|
| 559 |
+
# save
|
| 560 |
+
plt.imshow(save_loss, cmap='Reds')
|
| 561 |
+
plt.axis('off')
|
| 562 |
+
# plt.colorbar()
|
| 563 |
+
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-mseloss.png".format(pathn_record_str, t))
|
| 564 |
+
check_and_create_dir(filename)
|
| 565 |
+
plt.savefig(filename, dpi=800)
|
| 566 |
+
plt.close()
|
| 567 |
+
|
| 568 |
+
plt.imshow(save_weight, cmap='Greys')
|
| 569 |
+
plt.axis('off')
|
| 570 |
+
# plt.colorbar()
|
| 571 |
+
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-sdfweight.png".format(pathn_record_str, t))
|
| 572 |
+
plt.savefig(filename, dpi=800)
|
| 573 |
+
plt.close()
|
| 574 |
+
|
| 575 |
+
plt.imshow(save_weighted_loss, cmap='Reds')
|
| 576 |
+
plt.axis('off')
|
| 577 |
+
# plt.colorbar()
|
| 578 |
+
filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-weightedloss.png".format(pathn_record_str, t))
|
| 579 |
+
plt.savefig(filename, dpi=800)
|
| 580 |
+
plt.close()
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
if loss_weight is None:
|
| 587 |
+
loss = loss.sum(1).mean()
|
| 588 |
+
else:
|
| 589 |
+
loss = (loss.sum(1)*loss_weight).mean()
|
| 590 |
+
|
| 591 |
+
# if (cfg.loss.bis_loss_weight is not None) and (cfg.loss.bis_loss_weight > 0):
|
| 592 |
+
# loss_bis = bezier_intersection_loss(point_var[0]) * cfg.loss.bis_loss_weight
|
| 593 |
+
# loss = loss + loss_bis
|
| 594 |
+
if (cfg.loss.xing_loss_weight is not None) \
|
| 595 |
+
and (cfg.loss.xing_loss_weight > 0):
|
| 596 |
+
loss_xing = xing_loss(point_var) * cfg.loss.xing_loss_weight
|
| 597 |
+
loss = loss + loss_xing
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
loss_list.append(loss.item())
|
| 601 |
+
t_range.set_postfix({'loss': loss.item()})
|
| 602 |
+
loss.backward()
|
| 603 |
+
|
| 604 |
+
# step
|
| 605 |
+
for _, (optim, scheduler) in optim_schedular_dict.items():
|
| 606 |
+
optim.step()
|
| 607 |
+
scheduler.step()
|
| 608 |
+
|
| 609 |
+
for group in shape_groups_record:
|
| 610 |
+
group.fill_color.data.clamp_(0.0, 1.0)
|
| 611 |
+
|
| 612 |
+
if cfg.loss.use_distance_weighted_loss:
|
| 613 |
+
loss_weight_keep = loss_weight.detach().cpu().numpy() * 1
|
| 614 |
+
|
| 615 |
+
if not cfg.trainable.record:
|
| 616 |
+
for _, pi in pg.items():
|
| 617 |
+
for ppi in pi:
|
| 618 |
+
pi.require_grad = False
|
| 619 |
+
optim_schedular_dict = {}
|
| 620 |
+
|
| 621 |
+
if cfg.save.image:
|
| 622 |
+
filename = os.path.join(
|
| 623 |
+
cfg.experiment_dir, "demo-png", "{}.png".format(pathn_record_str))
|
| 624 |
+
check_and_create_dir(filename)
|
| 625 |
+
if cfg.use_ycrcb:
|
| 626 |
+
imshow = ycrcb_conversion(
|
| 627 |
+
img, format='[2D x 3]', reverse=True).detach().cpu()
|
| 628 |
+
else:
|
| 629 |
+
imshow = img.detach().cpu()
|
| 630 |
+
pydiffvg.imwrite(imshow, filename, gamma=gamma)
|
| 631 |
+
|
| 632 |
+
if cfg.save.output:
|
| 633 |
+
filename = os.path.join(
|
| 634 |
+
cfg.experiment_dir, "output-svg", "{}.svg".format(pathn_record_str))
|
| 635 |
+
check_and_create_dir(filename)
|
| 636 |
+
pydiffvg.save_svg(filename, w, h, shapes_record, shape_groups_record)
|
| 637 |
+
|
| 638 |
+
loss_matrix.append(loss_list)
|
| 639 |
+
|
| 640 |
+
# calculate the pixel loss
|
| 641 |
+
# pixel_loss = ((x-gt)**2).sum(dim=1, keepdim=True).sqrt_() # [N,1,H, W]
|
| 642 |
+
# region_loss = adaptive_avg_pool2d(pixel_loss, cfg.region_loss_pool_size)
|
| 643 |
+
# loss_weight = torch.softmax(region_loss.reshape(1, 1, -1), dim=-1)\
|
| 644 |
+
# .reshape_as(region_loss)
|
| 645 |
+
|
| 646 |
+
pos_init_method = naive_coord_init(x, gt)
|
| 647 |
+
|
| 648 |
+
if cfg.coord_init.type == 'naive':
|
| 649 |
+
pos_init_method = naive_coord_init(x, gt)
|
| 650 |
+
elif cfg.coord_init.type == 'sparse':
|
| 651 |
+
pos_init_method = sparse_coord_init(x, gt)
|
| 652 |
+
elif cfg.coord_init.type == 'random':
|
| 653 |
+
pos_init_method = random_coord_init([h, w])
|
| 654 |
+
else:
|
| 655 |
+
raise ValueError
|
| 656 |
+
|
| 657 |
+
if cfg.save.video:
|
| 658 |
+
print("saving iteration video...")
|
| 659 |
+
img_array = []
|
| 660 |
+
for ii in range(0, cfg.num_iter):
|
| 661 |
+
filename = os.path.join(
|
| 662 |
+
cfg.experiment_dir, "video-png",
|
| 663 |
+
"{}-iter{}.png".format(pathn_record_str, ii))
|
| 664 |
+
img = cv2.imread(filename)
|
| 665 |
+
# cv2.putText(
|
| 666 |
+
# img, "Path:{} \nIteration:{}".format(pathn_record_str, ii),
|
| 667 |
+
# (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
|
| 668 |
+
img_array.append(img)
|
| 669 |
+
|
| 670 |
+
videoname = os.path.join(
|
| 671 |
+
cfg.experiment_dir, "video-avi",
|
| 672 |
+
"{}.avi".format(pathn_record_str))
|
| 673 |
+
check_and_create_dir(videoname)
|
| 674 |
+
out = cv2.VideoWriter(
|
| 675 |
+
videoname,
|
| 676 |
+
# cv2.VideoWriter_fourcc(*'mp4v'),
|
| 677 |
+
cv2.VideoWriter_fourcc(*'FFV1'),
|
| 678 |
+
20.0, (w, h))
|
| 679 |
+
for iii in range(len(img_array)):
|
| 680 |
+
out.write(img_array[iii])
|
| 681 |
+
out.release()
|
| 682 |
+
# shutil.rmtree(os.path.join(cfg.experiment_dir, "video-png"))
|
| 683 |
+
|
| 684 |
+
print("The last loss is: {}".format(loss.item()))
|
| 685 |
+
|
| 686 |
|
| 687 |
if __name__ == "__main__":
|
| 688 |
|