Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import signal | |
| import subprocess # For invoking ffprobe | |
| import shutil | |
| import concurrent.futures | |
| import multiprocessing | |
| from contextlib import contextmanager | |
| sys.path.append(os.getcwd()) | |
| import argparse | |
| import csv | |
| import json | |
| from importlib.resources import files | |
| from pathlib import Path | |
| import torchaudio | |
| from tqdm import tqdm | |
| from datasets.arrow_writer import ArrowWriter | |
| from f5_tts.model.utils import ( | |
| convert_char_to_pinyin, | |
| ) | |
| PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/Emilia_ZH_EN_pinyin/vocab.txt") | |
| def is_csv_wavs_format(input_dataset_dir): | |
| fpath = Path(input_dataset_dir) | |
| metadata = fpath / "metadata.csv" | |
| wavs = fpath / "wavs" | |
| return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir() | |
| # Configuration constants | |
| BATCH_SIZE = 100 # Batch size for text conversion | |
| MAX_WORKERS = max(1, multiprocessing.cpu_count() - 1) # Leave one CPU free | |
| THREAD_NAME_PREFIX = "AudioProcessor" | |
| CHUNK_SIZE = 100 # Number of files to process per worker batch | |
| executor = None # Global executor for cleanup | |
| def graceful_exit(): | |
| """Context manager for graceful shutdown on signals""" | |
| def signal_handler(signum, frame): | |
| print("\nReceived signal to terminate. Cleaning up...") | |
| if executor is not None: | |
| print("Shutting down executor...") | |
| executor.shutdown(wait=False, cancel_futures=True) | |
| sys.exit(1) | |
| # Set up signal handlers | |
| signal.signal(signal.SIGINT, signal_handler) | |
| signal.signal(signal.SIGTERM, signal_handler) | |
| try: | |
| yield | |
| finally: | |
| if executor is not None: | |
| executor.shutdown(wait=False) | |
| def process_audio_file(audio_path, text, polyphone): | |
| """Process a single audio file by checking its existence and extracting duration.""" | |
| if not Path(audio_path).exists(): | |
| print(f"audio {audio_path} not found, skipping") | |
| return None | |
| try: | |
| audio_duration = get_audio_duration(audio_path) | |
| if audio_duration <= 0: | |
| raise ValueError(f"Duration {audio_duration} is non-positive.") | |
| return (audio_path, text, audio_duration) | |
| except Exception as e: | |
| print(f"Warning: Failed to process {audio_path} due to error: {e}. Skipping corrupt file.") | |
| return None | |
| def batch_convert_texts(texts, polyphone, batch_size=BATCH_SIZE): | |
| """Convert a list of texts to pinyin in batches.""" | |
| converted_texts = [] | |
| for i in range(0, len(texts), batch_size): | |
| batch = texts[i : i + batch_size] | |
| converted_batch = convert_char_to_pinyin(batch, polyphone=polyphone) | |
| converted_texts.extend(converted_batch) | |
| return converted_texts | |
| def prepare_csv_wavs_dir(input_dir, num_workers=None): | |
| global executor | |
| assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}" | |
| input_dir = Path(input_dir) | |
| metadata_path = input_dir / "metadata.csv" | |
| audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix()) | |
| polyphone = True | |
| total_files = len(audio_path_text_pairs) | |
| # Use provided worker count or calculate optimal number | |
| worker_count = num_workers if num_workers is not None else min(MAX_WORKERS, total_files) | |
| print(f"\nProcessing {total_files} audio files using {worker_count} workers...") | |
| with graceful_exit(): | |
| # Initialize thread pool with optimized settings | |
| with concurrent.futures.ThreadPoolExecutor( | |
| max_workers=worker_count, thread_name_prefix=THREAD_NAME_PREFIX | |
| ) as exec: | |
| executor = exec | |
| results = [] | |
| # Process files in chunks for better efficiency | |
| for i in range(0, len(audio_path_text_pairs), CHUNK_SIZE): | |
| chunk = audio_path_text_pairs[i : i + CHUNK_SIZE] | |
| # Submit futures in order | |
| chunk_futures = [executor.submit(process_audio_file, pair[0], pair[1], polyphone) for pair in chunk] | |
| # Iterate over futures in the original submission order to preserve ordering | |
| for future in tqdm( | |
| chunk_futures, | |
| total=len(chunk), | |
| desc=f"Processing chunk {i//CHUNK_SIZE + 1}/{(total_files + CHUNK_SIZE - 1)//CHUNK_SIZE}", | |
| ): | |
| try: | |
| result = future.result() | |
| if result is not None: | |
| results.append(result) | |
| except Exception as e: | |
| print(f"Error processing file: {e}") | |
| executor = None | |
| # Filter out failed results | |
| processed = [res for res in results if res is not None] | |
| if not processed: | |
| raise RuntimeError("No valid audio files were processed!") | |
| # Batch process text conversion | |
| raw_texts = [item[1] for item in processed] | |
| converted_texts = batch_convert_texts(raw_texts, polyphone, batch_size=BATCH_SIZE) | |
| # Prepare final results | |
| sub_result = [] | |
| durations = [] | |
| vocab_set = set() | |
| for (audio_path, _, duration), conv_text in zip(processed, converted_texts): | |
| sub_result.append({"audio_path": audio_path, "text": conv_text, "duration": duration}) | |
| durations.append(duration) | |
| vocab_set.update(list(conv_text)) | |
| return sub_result, durations, vocab_set | |
| def get_audio_duration(audio_path, timeout=5): | |
| """ | |
| Get the duration of an audio file in seconds using ffmpeg's ffprobe. | |
| Falls back to torchaudio.load() if ffprobe fails. | |
| """ | |
| try: | |
| cmd = [ | |
| "ffprobe", | |
| "-v", | |
| "error", | |
| "-show_entries", | |
| "format=duration", | |
| "-of", | |
| "default=noprint_wrappers=1:nokey=1", | |
| audio_path, | |
| ] | |
| result = subprocess.run( | |
| cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True, timeout=timeout | |
| ) | |
| duration_str = result.stdout.strip() | |
| if duration_str: | |
| return float(duration_str) | |
| raise ValueError("Empty duration string from ffprobe.") | |
| except (subprocess.TimeoutExpired, subprocess.SubprocessError, ValueError) as e: | |
| print(f"Warning: ffprobe failed for {audio_path} with error: {e}. Falling back to torchaudio.") | |
| try: | |
| audio, sample_rate = torchaudio.load(audio_path) | |
| return audio.shape[1] / sample_rate | |
| except Exception as e: | |
| raise RuntimeError(f"Both ffprobe and torchaudio failed for {audio_path}: {e}") | |
| def read_audio_text_pairs(csv_file_path): | |
| audio_text_pairs = [] | |
| parent = Path(csv_file_path).parent | |
| with open(csv_file_path, mode="r", newline="", encoding="utf-8-sig") as csvfile: | |
| reader = csv.reader(csvfile, delimiter="|") | |
| next(reader) # Skip the header row | |
| for row in reader: | |
| if len(row) >= 2: | |
| audio_file = row[0].strip() # First column: audio file path | |
| text = row[1].strip() # Second column: text | |
| audio_file_path = parent / audio_file | |
| audio_text_pairs.append((audio_file_path.as_posix(), text)) | |
| return audio_text_pairs | |
| def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune): | |
| out_dir = Path(out_dir) | |
| out_dir.mkdir(exist_ok=True, parents=True) | |
| print(f"\nSaving to {out_dir} ...") | |
| # Save dataset with improved batch size for better I/O performance | |
| raw_arrow_path = out_dir / "raw.arrow" | |
| with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=100) as writer: | |
| for line in tqdm(result, desc="Writing to raw.arrow ..."): | |
| writer.write(line) | |
| # Save durations to JSON | |
| dur_json_path = out_dir / "duration.json" | |
| with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f: | |
| json.dump({"duration": duration_list}, f, ensure_ascii=False) | |
| # Handle vocab file - write only once based on finetune flag | |
| voca_out_path = out_dir / "vocab.txt" | |
| if is_finetune: | |
| file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix() | |
| shutil.copy2(file_vocab_finetune, voca_out_path) | |
| else: | |
| with open(voca_out_path.as_posix(), "w") as f: | |
| for vocab in sorted(text_vocab_set): | |
| f.write(vocab + "\n") | |
| dataset_name = out_dir.stem | |
| print(f"\nFor {dataset_name}, sample count: {len(result)}") | |
| print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") | |
| print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") | |
| def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True, num_workers: int = None): | |
| if is_finetune: | |
| assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}" | |
| sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir, num_workers=num_workers) | |
| save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune) | |
| def cli(): | |
| try: | |
| # Before processing, check if ffprobe is available. | |
| if shutil.which("ffprobe") is None: | |
| print( | |
| "Warning: ffprobe is not available. Duration extraction will rely on torchaudio (which may be slower)." | |
| ) | |
| # Usage examples in help text | |
| parser = argparse.ArgumentParser( | |
| description="Prepare and save dataset.", | |
| epilog=""" | |
| Examples: | |
| # For fine-tuning (default): | |
| python prepare_csv_wavs.py /input/dataset/path /output/dataset/path | |
| # For pre-training: | |
| python prepare_csv_wavs.py /input/dataset/path /output/dataset/path --pretrain | |
| # With custom worker count: | |
| python prepare_csv_wavs.py /input/dataset/path /output/dataset/path --workers 4 | |
| """, | |
| ) | |
| parser.add_argument("inp_dir", type=str, help="Input directory containing the data.") | |
| parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.") | |
| parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune") | |
| parser.add_argument("--workers", type=int, help=f"Number of worker threads (default: {MAX_WORKERS})") | |
| args = parser.parse_args() | |
| prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain, num_workers=args.workers) | |
| except KeyboardInterrupt: | |
| print("\nOperation cancelled by user. Cleaning up...") | |
| if executor is not None: | |
| executor.shutdown(wait=False, cancel_futures=True) | |
| sys.exit(1) | |
| if __name__ == "__main__": | |
| cli() | |