Spaces:
Runtime error
Runtime error
| # training script. | |
| import os | |
| from importlib.resources import files | |
| import hydra | |
| from f5_tts.model import CFM, DiT, Trainer, UNetT | |
| from f5_tts.model.dataset import load_dataset | |
| from f5_tts.model.utils import get_tokenizer | |
| os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to root of project (local editable) | |
| def main(cfg): | |
| tokenizer = cfg.model.tokenizer | |
| mel_spec_type = cfg.model.mel_spec.mel_spec_type | |
| exp_name = f"{cfg.model.name}_{mel_spec_type}_{cfg.model.tokenizer}_{cfg.datasets.name}" | |
| # set text tokenizer | |
| if tokenizer != "custom": | |
| tokenizer_path = cfg.datasets.name | |
| else: | |
| tokenizer_path = cfg.model.tokenizer_path | |
| vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
| # set model | |
| if "F5TTS" in cfg.model.name: | |
| model_cls = DiT | |
| elif "E2TTS" in cfg.model.name: | |
| model_cls = UNetT | |
| wandb_resume_id = None | |
| model = CFM( | |
| transformer=model_cls(**cfg.model.arch, text_num_embeds=vocab_size, mel_dim=cfg.model.mel_spec.n_mel_channels), | |
| mel_spec_kwargs=cfg.model.mel_spec, | |
| vocab_char_map=vocab_char_map, | |
| ) | |
| # init trainer | |
| trainer = Trainer( | |
| model, | |
| epochs=cfg.optim.epochs, | |
| learning_rate=cfg.optim.learning_rate, | |
| num_warmup_updates=cfg.optim.num_warmup_updates, | |
| save_per_updates=cfg.ckpts.save_per_updates, | |
| keep_last_n_checkpoints=getattr(cfg.ckpts, "keep_last_n_checkpoints", -1), | |
| checkpoint_path=str(files("f5_tts").joinpath(f"../../{cfg.ckpts.save_dir}")), | |
| batch_size=cfg.datasets.batch_size_per_gpu, | |
| batch_size_type=cfg.datasets.batch_size_type, | |
| max_samples=cfg.datasets.max_samples, | |
| grad_accumulation_steps=cfg.optim.grad_accumulation_steps, | |
| max_grad_norm=cfg.optim.max_grad_norm, | |
| logger=cfg.ckpts.logger, | |
| wandb_project="CFM-TTS", | |
| wandb_run_name=exp_name, | |
| wandb_resume_id=wandb_resume_id, | |
| last_per_updates=cfg.ckpts.last_per_updates, | |
| log_samples=True, | |
| bnb_optimizer=cfg.optim.bnb_optimizer, | |
| mel_spec_type=mel_spec_type, | |
| is_local_vocoder=cfg.model.vocoder.is_local, | |
| local_vocoder_path=cfg.model.vocoder.local_path, | |
| ) | |
| train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec) | |
| trainer.train( | |
| train_dataset, | |
| num_workers=cfg.datasets.num_workers, | |
| resumable_with_seed=666, # seed for shuffling dataset | |
| ) | |
| if __name__ == "__main__": | |
| main() | |