File size: 17,355 Bytes
b7aa4ec 47423ef b7aa4ec 47423ef b7aa4ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
#!/usr/bin/env python3
"""
maa_jericho_scraper.py
~~~~~~~~~~~~~~~~~~~~~~~
This script scrapes object records from the Museum of Archaeology
and Anthropology (MAA) collection website at the University of
Cambridge. It now also offers a Gradio-powered web interface so that
records can be gathered and downloaded without using the command line.
The scraper targets the search results for a user-provided keyword
(default: "jericho") and collects detailed object pages containing
fields such as Accession Number, Description, Place, Period, Source,
Department, Reference Numbers, Cultural Affiliation, Material, Local
Term, Measurements and a series of Events.
Usage (CLI mode):
python maa_jericho_scraper.py --mode cli --keyword jericho --max-objects 100 --output jericho_objects.csv
Usage (Gradio UI):
python maa_jericho_scraper.py
Options:
--keyword: search keyword for filtering objects (default: jericho)
--max-objects: number of object pages to scrape (default: 100)
--output: path to the CSV file to write (default: jericho_objects.csv)
--start-id: starting numeric object identifier for fallback scraping
--mode: "cli" to run headless, "gradio" (default) to launch the UI
Requirements:
- Python 3.7+
- requests
- beautifulsoup4
- gradio (for the UI)
Note:
This script is provided for educational purposes. Always review
and respect the terms of use of any website you scrape. Use
responsibly and avoid overwhelming the target servers with rapid
requests.
"""
import argparse
import concurrent.futures
import csv
import io
import os
import re
import sys
import tempfile
import threading
import time
from typing import Dict, List, Optional, Tuple
import requests
from bs4 import BeautifulSoup
try:
import gradio as gr
except Exception: # pragma: no cover - import guard for optional dependency
gr = None # type: ignore[assignment]
BASE_URL = "https://collections.maa.cam.ac.uk"
SEARCH_PATH = "/objects/"
DEFAULT_KEYWORD = "jericho"
REQUEST_HEADERS = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/117.0",
"Accept-Language": "en-US,en;q=0.9",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Connection": "keep-alive",
}
THREAD_LOCAL = threading.local()
LOG_LOCK = threading.Lock()
DEFAULT_MAX_WORKERS = max(4, min(16, (os.cpu_count() or 4)))
MAX_FETCH_RETRIES = 3
RETRY_BACKOFF_SECONDS = 1.0
MINIMUM_VALID_FIELDS = ("Accession No", "Description")
def create_session() -> requests.Session:
session = requests.Session()
session.headers.update(REQUEST_HEADERS)
return session
def get_thread_session() -> requests.Session:
session = getattr(THREAD_LOCAL, "session", None)
if session is None:
session = create_session()
THREAD_LOCAL.session = session
return session
def log_info(message: str) -> None:
with LOG_LOCK:
sys.stderr.write(message)
if not message.endswith("\n"):
sys.stderr.write("\n")
sys.stderr.flush()
def get_search_page(session: requests.Session, keyword: str, page_num: int) -> Optional[BeautifulSoup]:
"""Return a BeautifulSoup object for a given page of search results."""
params = {"query": keyword, "page": page_num}
try:
resp = session.get(f"{BASE_URL}{SEARCH_PATH}", params=params, timeout=30)
resp.raise_for_status()
except Exception as exc: # pragma: no cover - network dependent
sys.stderr.write(f"[warning] Failed to fetch search page {page_num} for keyword '{keyword}': {exc}\n")
return None
return BeautifulSoup(resp.text, "html.parser")
def extract_object_links(soup: BeautifulSoup) -> List[str]:
"""Extract object page URLs from a search results page."""
links: List[str] = []
for a in soup.find_all("a", href=True):
href = a.get("href") or ""
if re.fullmatch(r"/objects/\d+/?", href):
full_url = f"{BASE_URL}{href.rstrip('/')}/"
if full_url not in links:
links.append(full_url)
return links
def parse_object_page(url: str, session: Optional[requests.Session] = None) -> Optional[Dict[str, str]]:
"""Retrieve and parse an individual object page."""
session = session or get_thread_session()
try:
resp = session.get(url, timeout=30)
resp.raise_for_status()
except Exception as exc: # pragma: no cover - network dependent
sys.stderr.write(f"[warning] Failed to fetch object page {url}: {exc}\n")
return None
soup = BeautifulSoup(resp.text, "html.parser")
result: Dict[str, str] = {
"Accession No": "",
"Description": "",
"Place": "",
"Period": "",
"Source": "",
"Department": "",
"Reference Numbers": "",
"Cultural Affiliation": "",
"Material": "",
"Local Term": "",
"Measurements": "",
"Events": "",
"FM": "",
"URL": url,
}
data_divs = soup.find_all("div", class_=lambda c: c and "flex-wrap" in c and "flex-md-nowrap" in c)
for div in data_divs:
label_p = div.find("p", class_=lambda c: c and "fw-bold" in c)
if not label_p:
continue
label = label_p.get_text(strip=True).rstrip(":").strip()
if label == "Events":
events_container = div.find("div", class_=lambda c: c and "d-flex" in c and "flex-column" in c)
if events_container:
entries: List[str] = []
for p_tag in events_container.find_all("p", class_=lambda c: c and c.startswith("col-")):
text = p_tag.get_text(separator=" ").strip()
text = re.sub(r"\s+", " ", text)
if text:
entries.append(text)
result["Events"] = " || ".join(entries)
else:
value_p = label_p.find_next_sibling("p")
if value_p:
value_text = value_p.get_text(separator=" ").strip()
value_text = re.sub(r"\s+", " ", value_text)
value_text = re.sub(r";\s*", "; ", value_text)
result[label] = value_text
fm_tag = soup.find("p", class_=lambda c: c and c.startswith("fs-"))
if fm_tag:
result["FM"] = fm_tag.get_text(strip=True)
return result
def is_record_valid(record: Dict[str, str]) -> bool:
"""Check whether a scraped record contains the required fields."""
return all(record.get(field, "").strip() for field in MINIMUM_VALID_FIELDS)
def fetch_object_with_retry(
url: str,
max_retries: int = MAX_FETCH_RETRIES,
backoff: float = RETRY_BACKOFF_SECONDS,
) -> Optional[Dict[str, str]]:
"""Fetch an object page with retries and basic validation."""
last_result: Optional[Dict[str, str]] = None
last_error: Optional[str] = None
for attempt in range(1, max_retries + 1):
result = parse_object_page(url)
if result and is_record_valid(result):
result["FetchStatus"] = "complete"
if attempt > 1:
log_info(f"[info] Successful retry for {url} on attempt {attempt}")
return result
if result:
result["FetchStatus"] = "partial"
last_result = result
last_error = "missing required fields"
else:
last_error = "request failed"
if attempt < max_retries:
sleep_for = backoff * attempt
log_info(
f"[warning] Attempt {attempt} for {url} failed ({last_error}); retrying in {sleep_for:.1f}s",
)
time.sleep(sleep_for)
if last_result:
log_info(f"[warning] Using partial data for {url} after {max_retries} attempts")
return last_result
log_info(f"[error] Giving up on {url} after {max_retries} attempts ({last_error})")
return None
def scrape_objects(
max_objects: int = 100,
start_id: int = 431363,
keyword: str = DEFAULT_KEYWORD,
max_workers: int = DEFAULT_MAX_WORKERS,
) -> List[Dict[str, str]]:
"""Scrape object pages until a desired number of results is collected."""
session = create_session()
search_keyword = keyword.strip() or DEFAULT_KEYWORD
object_urls: List[str] = []
page = 1
seen_pages = set()
while len(object_urls) < max_objects:
if page in seen_pages:
break
seen_pages.add(page)
soup = get_search_page(session, search_keyword, page)
if soup is None:
break
new_links = extract_object_links(soup)
if not new_links:
break
added = 0
for link in new_links:
if link not in object_urls:
object_urls.append(link)
added += 1
if len(object_urls) >= max_objects:
break
if added == 0:
break
page += 1
time.sleep(0.2)
if len(object_urls) < max_objects:
current_id = start_id
while len(object_urls) < max_objects:
url = f"{BASE_URL}{SEARCH_PATH}{current_id}/"
if url not in object_urls:
object_urls.append(url)
current_id += 1
urls_to_fetch = object_urls[:max_objects]
records: List[Dict[str, str]] = []
log_info(f"[info] Dispatching {len(urls_to_fetch)} object requests with up to {max_workers} workers")
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_url = {executor.submit(fetch_object_with_retry, url): url for url in urls_to_fetch}
for idx, future in enumerate(concurrent.futures.as_completed(future_to_url), start=1):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc: # pragma: no cover - concurrency guard
log_info(f"[error] Unexpected exception fetching {url}: {exc}")
data = None
log_info(f"[info] ({idx}/{len(urls_to_fetch)}) Fetched {url}")
if data:
records.append(data)
else:
records.append({"URL": url, "FetchStatus": "failed"})
return records
def collect_fieldnames(records: List[Dict[str, str]]) -> List[str]:
fieldnames: List[str] = []
for rec in records:
for key in rec.keys():
if key not in fieldnames:
fieldnames.append(key)
return fieldnames or ["URL"]
def records_to_csv_text(records: List[Dict[str, str]]) -> Tuple[List[str], str]:
fieldnames = collect_fieldnames(records)
buffer = io.StringIO()
writer = csv.DictWriter(buffer, fieldnames=fieldnames)
writer.writeheader()
for rec in records:
writer.writerow({key: rec.get(key, "") for key in fieldnames})
return fieldnames, buffer.getvalue()
def prepare_table(records: List[Dict[str, str]], fieldnames: List[str]) -> List[List[str]]:
return [[rec.get(field, "") for field in fieldnames] for rec in records]
def write_csv(records: List[Dict[str, str]], output_path: str) -> None:
"""Write scraped records to a CSV file."""
_, csv_text = records_to_csv_text(records)
with open(output_path, "w", newline="", encoding="utf-8") as f:
f.write(csv_text)
def run_scraper_interface(max_objects: int, start_id: int, keyword: str):
if gr is None: # pragma: no cover - runtime guard
raise RuntimeError("Gradio is not installed. Install it with `pip install gradio` to use the UI mode.")
try:
max_int = max(1, int(max_objects))
start_int = int(start_id)
except Exception:
status = "Please provide valid numeric values for max objects and start ID."
return gr.update(value=[], headers=[]), "", status
search_keyword = (keyword or "").strip()
if not search_keyword:
status = "Please enter a search keyword."
return gr.update(value=[], headers=[]), "", status
records = scrape_objects(max_objects=max_int, start_id=start_int, keyword=search_keyword)
fieldnames, csv_text = records_to_csv_text(records)
table = prepare_table(records, fieldnames)
status = f"Scraped {len(records)} object(s) for keyword '{search_keyword}'."
return gr.update(value=table, headers=fieldnames), csv_text, status
def prepare_csv_file(csv_text: str) -> Optional[str]:
if not csv_text:
return None
tmp_file = tempfile.NamedTemporaryFile(
delete=False,
suffix=".csv",
prefix="jericho_",
mode="w",
encoding="utf-8",
)
with tmp_file:
tmp_file.write(csv_text)
return tmp_file.name
def launch_gradio_app(
default_max: int = 25,
default_start: int = 431363,
default_keyword: str = DEFAULT_KEYWORD,
) -> None:
if gr is None: # pragma: no cover - runtime guard
raise RuntimeError("Gradio is not installed. Install it with `pip install gradio` to use the UI mode.")
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=IBM+Plex+Sans:wght@300;400;500;600&display=swap');
.gradio-container {
background: radial-gradient(circle at top, #f8f5ff 0%, #f5f7fb 55%, #eef1f6 100%);
font-family: 'IBM Plex Sans', 'Segoe UI', sans-serif;
color: #1f2937;
}
#header-card {
border-radius: 16px;
background: rgba(255, 255, 255, 0.85);
box-shadow: 0 12px 24px rgba(79, 59, 169, 0.15);
padding: 20px;
}
#status-card .gr-markdown {
background: rgba(255, 255, 255, 0.9);
padding: 12px 16px;
border-radius: 12px;
border-left: 4px solid #6c4ddb;
}
.launch-controls .gr-form{
gap: 16px !important;
}
"""
# with gr.Blocks(title="MAA Jericho Scraper", css=custom_css) as demo:
with gr.Blocks(title="MAA Jericho Scraper") as demo:
gr.Markdown(
"""<div id='header-card'>
<h1 style='margin-bottom: 0.4rem; color: #4f3ba9;'>MAA Jericho Scraper</h1>
<p style='margin: 0; color: #3b3b54;'>Scrape the Museum of Archaeology and Anthropology collection for artefacts using a keyword and export the results as CSV.</p>
</div>""",
elem_id="header-card",
)
with gr.Row(elem_classes="launch-controls"):
max_objects_input = gr.Slider(
minimum=1,
maximum=10000,
value=default_max,
step=10,
label="Maximum objects to scrape",
)
start_id_input = gr.Number(
value=default_start,
precision=0,
label="Fallback starting object ID",
)
keyword_input = gr.Textbox(
value=default_keyword,
label="Search keyword",
placeholder="Try terms such as 'Jericho', 'pottery', 'beads'...",
)
scrape_button = gr.Button("Run scraper", variant="primary", size="lg")
status_markdown = gr.Markdown("Ready.", elem_id="status-card")
results_table = gr.Dataframe(
value=[],
datatype="str",
label="Scraped Records",
interactive=False,
wrap=True,
row_count=(0, "dynamic"),
col_count=(0, "dynamic"),
)
csv_state = gr.State("")
download_button = gr.DownloadButton(
label="Download CSV",
variant="secondary",
size="lg",
)
scrape_button.click(
fn=run_scraper_interface,
inputs=[max_objects_input, start_id_input, keyword_input],
outputs=[results_table, csv_state, status_markdown],
)
download_button.click(fn=prepare_csv_file, inputs=csv_state, outputs=download_button)
demo.launch()
def main() -> None:
parser = argparse.ArgumentParser(
description="Scrape MAA object pages into a CSV file or launch the Gradio UI",
)
parser.add_argument(
"--keyword",
default=DEFAULT_KEYWORD,
help="Search keyword to filter objects (default: jericho)",
)
parser.add_argument(
"--max-objects",
type=int,
default=100,
help="Number of object pages to scrape when running in CLI mode (default: 100)",
)
parser.add_argument(
"--start-id",
type=int,
default=431363,
help="Fallback starting ID for sequential scraping",
)
parser.add_argument(
"--output",
default="jericho_objects.csv",
help="Output CSV file path when running in CLI mode",
)
parser.add_argument(
"--mode",
choices=["cli", "gradio"],
default="gradio",
help="Execution mode: 'cli' for command line, 'gradio' for the web UI",
)
args = parser.parse_args()
if args.mode == "cli":
records = scrape_objects(max_objects=args.max_objects, start_id=args.start_id, keyword=args.keyword)
write_csv(records, args.output)
print(f"Wrote {len(records)} records to {args.output}")
else:
launch_gradio_app(
default_max=args.max_objects,
default_start=args.start_id,
default_keyword=args.keyword,
)
if __name__ == "__main__":
main()
|