#!/usr/bin/env python3 """ maa_jericho_scraper.py ~~~~~~~~~~~~~~~~~~~~~~~ This script scrapes object records from the Museum of Archaeology and Anthropology (MAA) collection website at the University of Cambridge. It now also offers a Gradio-powered web interface so that records can be gathered and downloaded without using the command line. The scraper targets the search results for a user-provided keyword (default: "jericho") and collects detailed object pages containing fields such as Accession Number, Description, Place, Period, Source, Department, Reference Numbers, Cultural Affiliation, Material, Local Term, Measurements and a series of Events. Usage (CLI mode): python maa_jericho_scraper.py --mode cli --keyword jericho --max-objects 100 --output jericho_objects.csv Usage (Gradio UI): python maa_jericho_scraper.py Options: --keyword: search keyword for filtering objects (default: jericho) --max-objects: number of object pages to scrape (default: 100) --output: path to the CSV file to write (default: jericho_objects.csv) --start-id: starting numeric object identifier for fallback scraping --mode: "cli" to run headless, "gradio" (default) to launch the UI Requirements: - Python 3.7+ - requests - beautifulsoup4 - gradio (for the UI) Note: This script is provided for educational purposes. Always review and respect the terms of use of any website you scrape. Use responsibly and avoid overwhelming the target servers with rapid requests. """ import argparse import concurrent.futures import csv import io import os import re import sys import tempfile import threading import time from typing import Dict, List, Optional, Tuple import requests from bs4 import BeautifulSoup try: import gradio as gr except Exception: # pragma: no cover - import guard for optional dependency gr = None # type: ignore[assignment] BASE_URL = "https://collections.maa.cam.ac.uk" SEARCH_PATH = "/objects/" DEFAULT_KEYWORD = "jericho" REQUEST_HEADERS = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/117.0", "Accept-Language": "en-US,en;q=0.9", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Connection": "keep-alive", } THREAD_LOCAL = threading.local() LOG_LOCK = threading.Lock() DEFAULT_MAX_WORKERS = max(4, min(16, (os.cpu_count() or 4))) MAX_FETCH_RETRIES = 3 RETRY_BACKOFF_SECONDS = 1.0 MINIMUM_VALID_FIELDS = ("Accession No", "Description") def create_session() -> requests.Session: session = requests.Session() session.headers.update(REQUEST_HEADERS) return session def get_thread_session() -> requests.Session: session = getattr(THREAD_LOCAL, "session", None) if session is None: session = create_session() THREAD_LOCAL.session = session return session def log_info(message: str) -> None: with LOG_LOCK: sys.stderr.write(message) if not message.endswith("\n"): sys.stderr.write("\n") sys.stderr.flush() def get_search_page(session: requests.Session, keyword: str, page_num: int) -> Optional[BeautifulSoup]: """Return a BeautifulSoup object for a given page of search results.""" params = {"query": keyword, "page": page_num} try: resp = session.get(f"{BASE_URL}{SEARCH_PATH}", params=params, timeout=30) resp.raise_for_status() except Exception as exc: # pragma: no cover - network dependent sys.stderr.write(f"[warning] Failed to fetch search page {page_num} for keyword '{keyword}': {exc}\n") return None return BeautifulSoup(resp.text, "html.parser") def extract_object_links(soup: BeautifulSoup) -> List[str]: """Extract object page URLs from a search results page.""" links: List[str] = [] for a in soup.find_all("a", href=True): href = a.get("href") or "" if re.fullmatch(r"/objects/\d+/?", href): full_url = f"{BASE_URL}{href.rstrip('/')}/" if full_url not in links: links.append(full_url) return links def parse_object_page(url: str, session: Optional[requests.Session] = None) -> Optional[Dict[str, str]]: """Retrieve and parse an individual object page.""" session = session or get_thread_session() try: resp = session.get(url, timeout=30) resp.raise_for_status() except Exception as exc: # pragma: no cover - network dependent sys.stderr.write(f"[warning] Failed to fetch object page {url}: {exc}\n") return None soup = BeautifulSoup(resp.text, "html.parser") result: Dict[str, str] = { "Accession No": "", "Description": "", "Place": "", "Period": "", "Source": "", "Department": "", "Reference Numbers": "", "Cultural Affiliation": "", "Material": "", "Local Term": "", "Measurements": "", "Events": "", "FM": "", "URL": url, } data_divs = soup.find_all("div", class_=lambda c: c and "flex-wrap" in c and "flex-md-nowrap" in c) for div in data_divs: label_p = div.find("p", class_=lambda c: c and "fw-bold" in c) if not label_p: continue label = label_p.get_text(strip=True).rstrip(":").strip() if label == "Events": events_container = div.find("div", class_=lambda c: c and "d-flex" in c and "flex-column" in c) if events_container: entries: List[str] = [] for p_tag in events_container.find_all("p", class_=lambda c: c and c.startswith("col-")): text = p_tag.get_text(separator=" ").strip() text = re.sub(r"\s+", " ", text) if text: entries.append(text) result["Events"] = " || ".join(entries) else: value_p = label_p.find_next_sibling("p") if value_p: value_text = value_p.get_text(separator=" ").strip() value_text = re.sub(r"\s+", " ", value_text) value_text = re.sub(r";\s*", "; ", value_text) result[label] = value_text fm_tag = soup.find("p", class_=lambda c: c and c.startswith("fs-")) if fm_tag: result["FM"] = fm_tag.get_text(strip=True) return result def is_record_valid(record: Dict[str, str]) -> bool: """Check whether a scraped record contains the required fields.""" return all(record.get(field, "").strip() for field in MINIMUM_VALID_FIELDS) def fetch_object_with_retry( url: str, max_retries: int = MAX_FETCH_RETRIES, backoff: float = RETRY_BACKOFF_SECONDS, ) -> Optional[Dict[str, str]]: """Fetch an object page with retries and basic validation.""" last_result: Optional[Dict[str, str]] = None last_error: Optional[str] = None for attempt in range(1, max_retries + 1): result = parse_object_page(url) if result and is_record_valid(result): result["FetchStatus"] = "complete" if attempt > 1: log_info(f"[info] Successful retry for {url} on attempt {attempt}") return result if result: result["FetchStatus"] = "partial" last_result = result last_error = "missing required fields" else: last_error = "request failed" if attempt < max_retries: sleep_for = backoff * attempt log_info( f"[warning] Attempt {attempt} for {url} failed ({last_error}); retrying in {sleep_for:.1f}s", ) time.sleep(sleep_for) if last_result: log_info(f"[warning] Using partial data for {url} after {max_retries} attempts") return last_result log_info(f"[error] Giving up on {url} after {max_retries} attempts ({last_error})") return None def scrape_objects( max_objects: int = 100, start_id: int = 431363, keyword: str = DEFAULT_KEYWORD, max_workers: int = DEFAULT_MAX_WORKERS, ) -> List[Dict[str, str]]: """Scrape object pages until a desired number of results is collected.""" session = create_session() search_keyword = keyword.strip() or DEFAULT_KEYWORD object_urls: List[str] = [] page = 1 seen_pages = set() while len(object_urls) < max_objects: if page in seen_pages: break seen_pages.add(page) soup = get_search_page(session, search_keyword, page) if soup is None: break new_links = extract_object_links(soup) if not new_links: break added = 0 for link in new_links: if link not in object_urls: object_urls.append(link) added += 1 if len(object_urls) >= max_objects: break if added == 0: break page += 1 time.sleep(0.2) if len(object_urls) < max_objects: current_id = start_id while len(object_urls) < max_objects: url = f"{BASE_URL}{SEARCH_PATH}{current_id}/" if url not in object_urls: object_urls.append(url) current_id += 1 urls_to_fetch = object_urls[:max_objects] records: List[Dict[str, str]] = [] log_info(f"[info] Dispatching {len(urls_to_fetch)} object requests with up to {max_workers} workers") with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: future_to_url = {executor.submit(fetch_object_with_retry, url): url for url in urls_to_fetch} for idx, future in enumerate(concurrent.futures.as_completed(future_to_url), start=1): url = future_to_url[future] try: data = future.result() except Exception as exc: # pragma: no cover - concurrency guard log_info(f"[error] Unexpected exception fetching {url}: {exc}") data = None log_info(f"[info] ({idx}/{len(urls_to_fetch)}) Fetched {url}") if data: records.append(data) else: records.append({"URL": url, "FetchStatus": "failed"}) return records def collect_fieldnames(records: List[Dict[str, str]]) -> List[str]: fieldnames: List[str] = [] for rec in records: for key in rec.keys(): if key not in fieldnames: fieldnames.append(key) return fieldnames or ["URL"] def records_to_csv_text(records: List[Dict[str, str]]) -> Tuple[List[str], str]: fieldnames = collect_fieldnames(records) buffer = io.StringIO() writer = csv.DictWriter(buffer, fieldnames=fieldnames) writer.writeheader() for rec in records: writer.writerow({key: rec.get(key, "") for key in fieldnames}) return fieldnames, buffer.getvalue() def prepare_table(records: List[Dict[str, str]], fieldnames: List[str]) -> List[List[str]]: return [[rec.get(field, "") for field in fieldnames] for rec in records] def write_csv(records: List[Dict[str, str]], output_path: str) -> None: """Write scraped records to a CSV file.""" _, csv_text = records_to_csv_text(records) with open(output_path, "w", newline="", encoding="utf-8") as f: f.write(csv_text) def run_scraper_interface(max_objects: int, start_id: int, keyword: str): if gr is None: # pragma: no cover - runtime guard raise RuntimeError("Gradio is not installed. Install it with `pip install gradio` to use the UI mode.") try: max_int = max(1, int(max_objects)) start_int = int(start_id) except Exception: status = "Please provide valid numeric values for max objects and start ID." return gr.update(value=[], headers=[]), "", status search_keyword = (keyword or "").strip() if not search_keyword: status = "Please enter a search keyword." return gr.update(value=[], headers=[]), "", status records = scrape_objects(max_objects=max_int, start_id=start_int, keyword=search_keyword) fieldnames, csv_text = records_to_csv_text(records) table = prepare_table(records, fieldnames) status = f"Scraped {len(records)} object(s) for keyword '{search_keyword}'." return gr.update(value=table, headers=fieldnames), csv_text, status def prepare_csv_file(csv_text: str) -> Optional[str]: if not csv_text: return None tmp_file = tempfile.NamedTemporaryFile( delete=False, suffix=".csv", prefix="jericho_", mode="w", encoding="utf-8", ) with tmp_file: tmp_file.write(csv_text) return tmp_file.name def launch_gradio_app( default_max: int = 25, default_start: int = 431363, default_keyword: str = DEFAULT_KEYWORD, ) -> None: if gr is None: # pragma: no cover - runtime guard raise RuntimeError("Gradio is not installed. Install it with `pip install gradio` to use the UI mode.") custom_css = """ @import url('https://fonts.googleapis.com/css2?family=IBM+Plex+Sans:wght@300;400;500;600&display=swap'); .gradio-container { background: radial-gradient(circle at top, #f8f5ff 0%, #f5f7fb 55%, #eef1f6 100%); font-family: 'IBM Plex Sans', 'Segoe UI', sans-serif; color: #1f2937; } #header-card { border-radius: 16px; background: rgba(255, 255, 255, 0.85); box-shadow: 0 12px 24px rgba(79, 59, 169, 0.15); padding: 20px; } #status-card .gr-markdown { background: rgba(255, 255, 255, 0.9); padding: 12px 16px; border-radius: 12px; border-left: 4px solid #6c4ddb; } .launch-controls .gr-form{ gap: 16px !important; } """ # with gr.Blocks(title="MAA Jericho Scraper", css=custom_css) as demo: with gr.Blocks(title="MAA Jericho Scraper") as demo: gr.Markdown( """

MAA Jericho Scraper

Scrape the Museum of Archaeology and Anthropology collection for artefacts using a keyword and export the results as CSV.

""", elem_id="header-card", ) with gr.Row(elem_classes="launch-controls"): max_objects_input = gr.Slider( minimum=1, maximum=10000, value=default_max, step=10, label="Maximum objects to scrape", ) start_id_input = gr.Number( value=default_start, precision=0, label="Fallback starting object ID", ) keyword_input = gr.Textbox( value=default_keyword, label="Search keyword", placeholder="Try terms such as 'Jericho', 'pottery', 'beads'...", ) scrape_button = gr.Button("Run scraper", variant="primary", size="lg") status_markdown = gr.Markdown("Ready.", elem_id="status-card") results_table = gr.Dataframe( value=[], datatype="str", label="Scraped Records", interactive=False, wrap=True, row_count=(0, "dynamic"), col_count=(0, "dynamic"), ) csv_state = gr.State("") download_button = gr.DownloadButton( label="Download CSV", variant="secondary", size="lg", ) scrape_button.click( fn=run_scraper_interface, inputs=[max_objects_input, start_id_input, keyword_input], outputs=[results_table, csv_state, status_markdown], ) download_button.click(fn=prepare_csv_file, inputs=csv_state, outputs=download_button) demo.launch() def main() -> None: parser = argparse.ArgumentParser( description="Scrape MAA object pages into a CSV file or launch the Gradio UI", ) parser.add_argument( "--keyword", default=DEFAULT_KEYWORD, help="Search keyword to filter objects (default: jericho)", ) parser.add_argument( "--max-objects", type=int, default=100, help="Number of object pages to scrape when running in CLI mode (default: 100)", ) parser.add_argument( "--start-id", type=int, default=431363, help="Fallback starting ID for sequential scraping", ) parser.add_argument( "--output", default="jericho_objects.csv", help="Output CSV file path when running in CLI mode", ) parser.add_argument( "--mode", choices=["cli", "gradio"], default="gradio", help="Execution mode: 'cli' for command line, 'gradio' for the web UI", ) args = parser.parse_args() if args.mode == "cli": records = scrape_objects(max_objects=args.max_objects, start_id=args.start_id, keyword=args.keyword) write_csv(records, args.output) print(f"Wrote {len(records)} records to {args.output}") else: launch_gradio_app( default_max=args.max_objects, default_start=args.start_id, default_keyword=args.keyword, ) if __name__ == "__main__": main()