Spaces:
Paused
Paused
| import time | |
| import torch | |
| import hydra | |
| import pytorch_lightning as pl | |
| from typing import Any | |
| from hydra.core.config_store import ConfigStore | |
| from omegaconf import OmegaConf | |
| from pytorch_lightning.loggers import WandbLogger | |
| from pytorch_lightning.callbacks import ModelCheckpoint | |
| from pathlib import Path | |
| from dataclasses import dataclass | |
| from .module import GenericModule | |
| from .data.module import GenericDataModule | |
| from .callbacks import EvalSaveCallback, ImageLoggerCallback | |
| from .models.schema import ModelConfiguration, DINOConfiguration, ResNetConfiguration | |
| from .data.schema import MIADataConfiguration, KITTIDataConfiguration, NuScenesDataConfiguration | |
| class ExperimentConfiguration: | |
| name: str | |
| class Configuration: | |
| model: ModelConfiguration | |
| experiment: ExperimentConfiguration | |
| data: Any | |
| training: Any | |
| cs = ConfigStore.instance() | |
| # Store root configuration schema | |
| cs.store(name="pretrain", node=Configuration) | |
| cs.store(name="mapper_nuscenes", node=Configuration) | |
| cs.store(name="mapper_kitti", node=Configuration) | |
| # Store data configuration schema | |
| cs.store(group="schema/data", name="mia", | |
| node=MIADataConfiguration, package="data") | |
| cs.store(group="schema/data", name="kitti", node=KITTIDataConfiguration, package="data") | |
| cs.store(group="schema/data", name="nuscenes", node=NuScenesDataConfiguration, package="data") | |
| cs.store(group="model/schema/backbone", name="dino", node=DINOConfiguration, package="model.image_encoder.backbone") | |
| cs.store(group="model/schema/backbone", name="resnet", node=ResNetConfiguration, package="model.image_encoder.backbone") | |
| def train(cfg: Configuration): | |
| OmegaConf.resolve(cfg) | |
| dm = GenericDataModule(cfg.data) | |
| model = GenericModule(cfg) | |
| exp_name_with_time = cfg.experiment.name + \ | |
| "_" + time.strftime("%Y-%m-%d_%H-%M-%S") | |
| callbacks: list[pl.Callback] | |
| if cfg.training.eval: | |
| save_dir = Path(cfg.training.save_dir) | |
| save_dir.mkdir(parents=True, exist_ok=True) | |
| callbacks = [ | |
| EvalSaveCallback(save_dir=save_dir) | |
| ] | |
| logger = None | |
| else: | |
| callbacks = [ | |
| ImageLoggerCallback(num_classes=cfg.training.num_classes), | |
| ModelCheckpoint( | |
| monitor=cfg.training.checkpointing.monitor, | |
| save_last=cfg.training.checkpointing.save_last, | |
| save_top_k=cfg.training.checkpointing.save_top_k, | |
| ) | |
| ] | |
| logger = WandbLogger( | |
| name=exp_name_with_time, | |
| id=exp_name_with_time, | |
| entity="mappred-large", | |
| project="map-pred-full-v3", | |
| ) | |
| logger.watch(model, log="all", log_freq=500) | |
| if cfg.training.checkpoint is not None: | |
| state_dict = torch.load(cfg.training.checkpoint)['state_dict'] | |
| model.load_state_dict(state_dict, strict=False) | |
| trainer_args = OmegaConf.to_container(cfg.training.trainer) | |
| trainer_args['callbacks'] = callbacks | |
| trainer_args['logger'] = logger | |
| trainer = pl.Trainer(**trainer_args) | |
| if cfg.training.eval: | |
| trainer.test(model, datamodule=dm) | |
| else: | |
| trainer.fit(model, datamodule=dm) | |
| if __name__ == "__main__": | |
| pl.seed_everything(42) | |
| torch.set_float32_matmul_precision("high") | |
| train() | |