Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| # Load model and tokenizer | |
| model_name = "martinbravo/llama_finetuned_test" | |
| base_model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" | |
| # Load tokenizer and model locally | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", # Automatically maps model to GPU/CPU | |
| trust_remote_code=True, # If model uses custom implementations | |
| ) | |
| # Create a text-generation pipeline | |
| generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Build input prompt | |
| prompt = system_message + "\n" | |
| for user_input, assistant_response in history: | |
| prompt += f"User: {user_input}\nAssistant: {assistant_response}\n" | |
| prompt += f"User: {message}\nAssistant:" | |
| # Generate response | |
| response = generator( | |
| prompt, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, # Sampling for diverse responses | |
| )[0]["generated_text"] | |
| # Extract the assistant's response | |
| assistant_response = response[len(prompt) :].strip() | |
| yield assistant_response | |
| # Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |