Spaces:
Runtime error
Runtime error
Martin Tomov
commited on
optimise
Browse files
app.py
CHANGED
|
@@ -9,10 +9,8 @@ import torch
|
|
| 9 |
import requests
|
| 10 |
import numpy as np
|
| 11 |
from PIL import Image
|
| 12 |
-
import matplotlib.pyplot as plt
|
| 13 |
-
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
| 14 |
import gradio as gr
|
| 15 |
-
import
|
| 16 |
import json
|
| 17 |
|
| 18 |
@dataclass
|
|
@@ -54,10 +52,9 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
| 54 |
label = detection.label
|
| 55 |
score = detection.score
|
| 56 |
box = detection.box
|
| 57 |
-
mask = detection.mask
|
| 58 |
|
| 59 |
if include_bboxes:
|
| 60 |
-
color = np.random.randint(0, 256, size=3)
|
| 61 |
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
| 62 |
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
| 63 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
@@ -65,8 +62,7 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
| 65 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
| 66 |
|
| 67 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
|
| 68 |
-
|
| 69 |
-
return annotated_image
|
| 70 |
|
| 71 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
| 72 |
if isinstance(image, str) and image.startswith("http"):
|
|
@@ -77,19 +73,14 @@ def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
|
| 77 |
image = image.convert("RGB")
|
| 78 |
return image
|
| 79 |
|
| 80 |
-
def get_boxes(detection_results: List[DetectionResult]) -> List[List[
|
| 81 |
-
|
| 82 |
-
for result in detection_results:
|
| 83 |
-
xyxy = result.box.xyxy
|
| 84 |
-
boxes.append(xyxy)
|
| 85 |
-
return [boxes]
|
| 86 |
|
| 87 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
| 88 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 89 |
if len(contours) == 0:
|
| 90 |
return np.array([])
|
| 91 |
-
|
| 92 |
-
return largest_contour
|
| 93 |
|
| 94 |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
| 95 |
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1).numpy().astype(np.uint8)
|
|
@@ -101,21 +92,19 @@ def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> L
|
|
| 101 |
masks[idx] = cv2.fillPoly(np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
| 102 |
return list(masks)
|
| 103 |
|
| 104 |
-
|
| 105 |
-
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
| 106 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
| 107 |
-
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection"
|
| 108 |
-
labels = [label if label.endswith(".") else label+"." for label in labels]
|
| 109 |
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
| 110 |
return [DetectionResult.from_dict(result) for result in results]
|
| 111 |
|
| 112 |
-
@spaces.GPU
|
| 113 |
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
| 114 |
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
| 115 |
-
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id)
|
| 116 |
processor = AutoProcessor.from_pretrained(segmenter_id)
|
| 117 |
boxes = get_boxes(detection_results)
|
| 118 |
-
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt")
|
| 119 |
outputs = segmentator(**inputs)
|
| 120 |
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
| 121 |
masks = refine_masks(masks, polygon_refinement)
|
|
@@ -152,9 +141,7 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
|
|
| 152 |
for detection in detections:
|
| 153 |
if detection.mask is not None:
|
| 154 |
extract_and_paste_insect(image, detection, yellow_background)
|
| 155 |
-
|
| 156 |
-
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
| 157 |
-
return yellow_background
|
| 158 |
|
| 159 |
def run_length_encoding(mask):
|
| 160 |
pixels = mask.flatten()
|
|
|
|
| 9 |
import requests
|
| 10 |
import numpy as np
|
| 11 |
from PIL import Image
|
|
|
|
|
|
|
| 12 |
import gradio as gr
|
| 13 |
+
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
| 14 |
import json
|
| 15 |
|
| 16 |
@dataclass
|
|
|
|
| 52 |
label = detection.label
|
| 53 |
score = detection.score
|
| 54 |
box = detection.box
|
|
|
|
| 55 |
|
| 56 |
if include_bboxes:
|
| 57 |
+
color = [int(c) for c in np.random.randint(0, 256, size=3)]
|
| 58 |
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
| 59 |
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
| 60 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
|
|
| 62 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
| 63 |
|
| 64 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
|
| 65 |
+
return annotate(image, detections, include_bboxes)
|
|
|
|
| 66 |
|
| 67 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
| 68 |
if isinstance(image, str) and image.startswith("http"):
|
|
|
|
| 73 |
image = image.convert("RGB")
|
| 74 |
return image
|
| 75 |
|
| 76 |
+
def get_boxes(detection_results: List[DetectionResult]) -> List[List[float]]:
|
| 77 |
+
return [result.box.xyxy for result in detection_results]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
| 80 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 81 |
if len(contours) == 0:
|
| 82 |
return np.array([])
|
| 83 |
+
return max(contours, key=cv2.contourArea)
|
|
|
|
| 84 |
|
| 85 |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
| 86 |
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1).numpy().astype(np.uint8)
|
|
|
|
| 92 |
masks[idx] = cv2.fillPoly(np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
| 93 |
return list(masks)
|
| 94 |
|
| 95 |
+
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[DetectionResult]:
|
|
|
|
| 96 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
| 97 |
+
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection")
|
| 98 |
+
labels = [label if label.endswith(".") else label + "." for label in labels]
|
| 99 |
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
| 100 |
return [DetectionResult.from_dict(result) for result in results]
|
| 101 |
|
|
|
|
| 102 |
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
| 103 |
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
| 104 |
+
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id)
|
| 105 |
processor = AutoProcessor.from_pretrained(segmenter_id)
|
| 106 |
boxes = get_boxes(detection_results)
|
| 107 |
+
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt")
|
| 108 |
outputs = segmentator(**inputs)
|
| 109 |
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
| 110 |
masks = refine_masks(masks, polygon_refinement)
|
|
|
|
| 141 |
for detection in detections:
|
| 142 |
if detection.mask is not None:
|
| 143 |
extract_and_paste_insect(image, detection, yellow_background)
|
| 144 |
+
return cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
def run_length_encoding(mask):
|
| 147 |
pixels = mask.flatten()
|