Spaces:
Runtime error
Runtime error
Martin Tomov
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -43,8 +43,7 @@ class DetectionResult:
|
|
| 43 |
ymin=detection_dict['box']['ymin'],
|
| 44 |
xmax=detection_dict['box']['xmax'],
|
| 45 |
ymax=detection_dict['box']['ymax']
|
| 46 |
-
)
|
| 47 |
-
mask=detection_dict.get('mask')
|
| 48 |
)
|
| 49 |
|
| 50 |
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
|
@@ -52,12 +51,20 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
| 52 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
| 53 |
|
| 54 |
for detection in detection_results:
|
|
|
|
|
|
|
|
|
|
| 55 |
mask = detection.mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
if mask is not None:
|
| 57 |
mask_uint8 = (mask * 255).astype(np.uint8)
|
| 58 |
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 59 |
-
|
| 60 |
-
cv2.drawContours(image_cv2, contours, -1, (0, 0, 0), 2) # Black color for contours
|
| 61 |
|
| 62 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
| 63 |
|
|
@@ -188,25 +195,25 @@ def detections_to_json(detections):
|
|
| 188 |
|
| 189 |
def process_image(image, include_json):
|
| 190 |
labels = ["insect"]
|
| 191 |
-
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
| 192 |
-
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
| 193 |
-
if include_json:
|
| 194 |
-
detections_json = detections_to_json(detections)
|
| 195 |
-
json_output_path = "insect_detections.json"
|
| 196 |
-
with open(json_output_path,
|
| 197 |
-
json.dump(detections_json, json_file, indent=4)
|
| 198 |
-
return yellow_background_with_insects, json.dumps(detections_json, separators=(
|
| 199 |
-
else:
|
| 200 |
-
return yellow_background_with_insects, None
|
| 201 |
|
| 202 |
examples = [
|
| 203 |
-
[
|
| 204 |
]
|
| 205 |
|
| 206 |
gr.Interface(
|
| 207 |
-
fn=process_image,
|
| 208 |
-
inputs=[gr.Image(type
|
| 209 |
-
outputs=[gr.Image(type
|
| 210 |
-
title
|
| 211 |
-
examples=examples
|
| 212 |
).launch()
|
|
|
|
| 43 |
ymin=detection_dict['box']['ymin'],
|
| 44 |
xmax=detection_dict['box']['xmax'],
|
| 45 |
ymax=detection_dict['box']['ymax']
|
| 46 |
+
)
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
|
|
|
| 51 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
| 52 |
|
| 53 |
for detection in detection_results:
|
| 54 |
+
label = detection.label
|
| 55 |
+
score = detection.score
|
| 56 |
+
box = detection.box
|
| 57 |
mask = detection.mask
|
| 58 |
+
color = np.random.randint(0, 256, size=3).tolist()
|
| 59 |
+
|
| 60 |
+
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
| 61 |
+
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
| 62 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
| 63 |
+
|
| 64 |
if mask is not None:
|
| 65 |
mask_uint8 = (mask * 255).astype(np.uint8)
|
| 66 |
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 67 |
+
cv2.drawContours(image_cv2, contours, -1, color, 2)
|
|
|
|
| 68 |
|
| 69 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
| 70 |
|
|
|
|
| 195 |
|
| 196 |
def process_image(image, include_json):
|
| 197 |
labels = ["insect"]
|
| 198 |
+
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
| 199 |
+
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
| 200 |
+
if include_json:
|
| 201 |
+
detections_json = detections_to_json(detections)
|
| 202 |
+
json_output_path = "insect_detections.json"
|
| 203 |
+
with open(json_output_path, 'w') as json_file:
|
| 204 |
+
json.dump(detections_json, json_file, indent=4)
|
| 205 |
+
return yellow_background_with_insects, json.dumps(detections_json, separators=(',', ':'))
|
| 206 |
+
else:
|
| 207 |
+
return yellow_background_with_insects, None
|
| 208 |
|
| 209 |
examples = [
|
| 210 |
+
["flower-night.jpg"]
|
| 211 |
]
|
| 212 |
|
| 213 |
gr.Interface(
|
| 214 |
+
fn=process_image,
|
| 215 |
+
inputs=[gr.Image(type="pil"), gr.Checkbox(label="Include JSON", value=False)],
|
| 216 |
+
outputs=[gr.Image(type="numpy"), gr.Textbox()],
|
| 217 |
+
title="InsectSAM π",
|
| 218 |
+
examples=examples
|
| 219 |
).launch()
|