Spaces:
Runtime error
Runtime error
Martin Tomov
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -49,35 +49,31 @@ class DetectionResult:
|
|
| 49 |
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
| 50 |
image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
|
| 51 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
| 52 |
-
|
| 53 |
-
# Create a completely yellow background
|
| 54 |
-
yellow_background = np.full(image_cv2.shape, (0, 255, 255), dtype=np.uint8)
|
| 55 |
-
|
| 56 |
for detection in detection_results:
|
|
|
|
|
|
|
| 57 |
box = detection.box
|
| 58 |
mask = detection.mask
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
cv2.rectangle(
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
if mask is not None:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# Extract insect region using mask
|
| 68 |
-
insect_region = image_cv2 * mask_3_channel
|
| 69 |
-
|
| 70 |
-
# Overlay insect region within the bounding box on the yellow background
|
| 71 |
-
yellow_background[mask_3_channel] = insect_region[mask_3_channel]
|
| 72 |
|
| 73 |
-
return cv2.cvtColor(
|
| 74 |
|
| 75 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult]) -> np.ndarray:
|
| 76 |
annotated_image = annotate(image, detections)
|
| 77 |
return annotated_image
|
| 78 |
|
| 79 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
| 80 |
-
if isinstance(image, str) and image.
|
| 81 |
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
| 82 |
elif isinstance(image, str):
|
| 83 |
image = Image.open(image).convert("RGB")
|
|
@@ -110,7 +106,7 @@ def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> L
|
|
| 110 |
return list(masks)
|
| 111 |
|
| 112 |
@spaces.GPU
|
| 113 |
-
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[
|
| 114 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
| 115 |
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device="cuda")
|
| 116 |
labels = [label if label.endswith(".") else label+"." for label in labels]
|
|
@@ -163,7 +159,7 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
|
|
| 163 |
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
| 164 |
return yellow_background
|
| 165 |
|
| 166 |
-
def run_length_encoding(mask
|
| 167 |
pixels = mask.flatten()
|
| 168 |
rle = []
|
| 169 |
last_val = 0
|
|
@@ -180,7 +176,7 @@ def run_length_encoding(mask: np.ndarray) -> List[int]:
|
|
| 180 |
rle.append(count)
|
| 181 |
return rle
|
| 182 |
|
| 183 |
-
def detections_to_json(detections
|
| 184 |
detections_list = []
|
| 185 |
for detection in detections:
|
| 186 |
detection_dict = {
|
|
|
|
| 49 |
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
| 50 |
image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
|
| 51 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
| 52 |
+
|
|
|
|
|
|
|
|
|
|
| 53 |
for detection in detection_results:
|
| 54 |
+
label = detection.label
|
| 55 |
+
score = detection.score
|
| 56 |
box = detection.box
|
| 57 |
mask = detection.mask
|
| 58 |
+
color = np.random.randint(0, 256, size=3).tolist()
|
| 59 |
+
|
| 60 |
+
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
| 61 |
+
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
| 62 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
| 63 |
+
|
| 64 |
if mask is not None:
|
| 65 |
+
mask_uint8 = (mask * 255).astype(np.uint8)
|
| 66 |
+
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 67 |
+
cv2.drawContours(image_cv2, contours, -1, color, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
| 70 |
|
| 71 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult]) -> np.ndarray:
|
| 72 |
annotated_image = annotate(image, detections)
|
| 73 |
return annotated_image
|
| 74 |
|
| 75 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
| 76 |
+
if isinstance(image, str) and image.startswith("http"):
|
| 77 |
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
| 78 |
elif isinstance(image, str):
|
| 79 |
image = Image.open(image).convert("RGB")
|
|
|
|
| 106 |
return list(masks)
|
| 107 |
|
| 108 |
@spaces.GPU
|
| 109 |
+
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
| 110 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
| 111 |
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device="cuda")
|
| 112 |
labels = [label if label.endswith(".") else label+"." for label in labels]
|
|
|
|
| 159 |
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
| 160 |
return yellow_background
|
| 161 |
|
| 162 |
+
def run_length_encoding(mask):
|
| 163 |
pixels = mask.flatten()
|
| 164 |
rle = []
|
| 165 |
last_val = 0
|
|
|
|
| 176 |
rle.append(count)
|
| 177 |
return rle
|
| 178 |
|
| 179 |
+
def detections_to_json(detections):
|
| 180 |
detections_list = []
|
| 181 |
for detection in detections:
|
| 182 |
detection_dict = {
|