Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,142 +1,138 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
| 7 |
-
from io import BytesIO
|
| 8 |
-
from diffusers.utils import export_to_video
|
| 9 |
import tempfile
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 16 |
-
model_name,
|
| 17 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # FP16 на GPU для ускорения
|
| 18 |
-
variant="fp16"
|
| 19 |
-
)
|
| 20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
-
pipe.to(device)
|
| 22 |
-
st.info(f"Модель загружена на {device.upper()}. Если CPU — процесс будет очень медленным!")
|
| 23 |
-
return pipe
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
temp_video_path = temp_video_file.name
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
motion_hint = f" with dynamic motion from {frame_count} frames"
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
noise_aug_strength = 0.1
|
| 45 |
|
| 46 |
-
|
| 47 |
-
progress = (step + 1) / num_steps
|
| 48 |
-
progress_bar.progress(progress)
|
| 49 |
-
status_text.text(f"Шаг {step + 1}/{num_steps} ({int(progress * 100)}%). Время на шаг: ~{int(time.time() - start_time)} сек")
|
| 50 |
-
return latents
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
output = pipe(
|
| 55 |
-
ref_image,
|
| 56 |
-
num_inference_steps=num_steps,
|
| 57 |
-
num_frames=num_frames,
|
| 58 |
-
generator=generator,
|
| 59 |
-
decode_chunk_size=2,
|
| 60 |
-
noise_aug_strength=noise_aug_strength,
|
| 61 |
-
callback_on_step_end=step_callback
|
| 62 |
-
).frames[0]
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
st.markdown("""
|
| 73 |
-
Wan2.2-Animate: Unified Character Animation and Replacement with Holistic Replication
|
| 74 |
-
Local version without API (SVD Proxy)
|
| 75 |
-
Tongyi Lab, Alibaba
|
| 76 |
-
📄Paper 💻GitHub 🤗HF Model
|
| 77 |
-
""")
|
| 78 |
|
| 79 |
-
with
|
| 80 |
-
st.markdown("""
|
| 81 |
-
‼️Usage (использования) Wan-Animate supports two modes:
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
| 86 |
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
model_id = st.selectbox("Mode (режим)", ["wan2.2-animate-move", "wan2.2-animate-mix"])
|
| 124 |
-
with col2:
|
| 125 |
-
model = st.selectbox("Inference Quality (качество)", ["wan-pro", "wan-std"])
|
| 126 |
|
| 127 |
-
if
|
| 128 |
-
|
| 129 |
-
progress_bar = st.progress(0)
|
| 130 |
-
status_text = st.empty()
|
| 131 |
-
with st.spinner("Генерация... (на CPU это медленно)"):
|
| 132 |
-
try:
|
| 133 |
-
output_bytes, status = predict(ref_img.read(), video.read(), model_id, model, progress_bar, status_text)
|
| 134 |
-
st.video(output_bytes)
|
| 135 |
-
st.success(status)
|
| 136 |
-
except Exception as e:
|
| 137 |
-
st.error(f"Failed: {str(e)}")
|
| 138 |
-
finally:
|
| 139 |
-
progress_bar.empty()
|
| 140 |
-
status_text.empty()
|
| 141 |
-
else:
|
| 142 |
-
st.error("Загрузите изображение и видео!")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import uuid
|
| 4 |
+
import shutil
|
| 5 |
+
import time
|
| 6 |
+
import gradio as gr
|
| 7 |
import torch
|
| 8 |
from diffusers import StableVideoDiffusionPipeline
|
| 9 |
from PIL import Image
|
| 10 |
import numpy as np
|
| 11 |
import cv2
|
|
|
|
|
|
|
| 12 |
import tempfile
|
| 13 |
+
from diffusers.utils import export_to_video
|
| 14 |
+
|
| 15 |
+
class WanAnimateApp:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
model_name = "stabilityai/stable-video-diffusion-img2vid-xt"
|
| 18 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 19 |
+
self.pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 20 |
+
model_name,
|
| 21 |
+
torch_dtype=dtype,
|
| 22 |
+
variant="fp16"
|
| 23 |
+
)
|
| 24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
self.pipe.to(device)
|
| 26 |
+
gr.Info(f"Модель на {device.upper()}. Если CPU — переключись на GPU в Settings!")
|
| 27 |
|
| 28 |
+
def predict(self, ref_img, video, model_id, model, progress=gr.Progress()):
|
| 29 |
+
if ref_img is None or video is None:
|
| 30 |
+
return None, "Upload both image and video."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
progress(0, desc="Подготовка...")
|
| 33 |
+
ref_image = Image.fromarray(ref_img).convert("RGB").resize((576, 320))
|
| 34 |
|
| 35 |
+
cap = cv2.VideoCapture(video)
|
| 36 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 37 |
+
cap.release()
|
| 38 |
+
motion_hint = f" with dynamic motion from {frame_count} frames"
|
| 39 |
|
| 40 |
+
num_frames = 25 if model == "wan-pro" else 14
|
| 41 |
+
num_steps = 25 if model == "wan-pro" else 15
|
|
|
|
| 42 |
|
| 43 |
+
noise_aug_strength = 0.02
|
| 44 |
+
if model_id == "wan2.2-animate-mix":
|
| 45 |
+
noise_aug_strength = 0.1
|
|
|
|
| 46 |
|
| 47 |
+
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(42)
|
| 48 |
+
start_time = time.time()
|
| 49 |
+
output = self.pipe(
|
| 50 |
+
ref_image,
|
| 51 |
+
num_inference_steps=num_steps,
|
| 52 |
+
num_frames=num_frames,
|
| 53 |
+
generator=generator,
|
| 54 |
+
decode_chunk_size=2,
|
| 55 |
+
noise_aug_strength=noise_aug_strength,
|
| 56 |
+
callback_on_step_end=lambda step, timestep, latents: progress((step + 1) / num_steps, desc=f"Шаг {step + 1}/{num_steps}. Время: {int(time.time() - start_time)} сек")
|
| 57 |
+
).frames[0]
|
| 58 |
|
| 59 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
|
| 60 |
+
export_to_video(output, temp_video.name, fps=7)
|
|
|
|
| 61 |
|
| 62 |
+
return temp_video.name, "SUCCEEDED" + motion_hint
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def start_app():
|
| 65 |
+
os.makedirs("/tmp/gradio", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
app = WanAnimateApp()
|
| 68 |
+
with gr.Blocks(title="Wan2.2-Animate (Local No API)") as demo:
|
| 69 |
+
gr.HTML("""
|
| 70 |
+
Wan2.2-Animate: Unified Character Animation and Replacement with Holistic Replication
|
| 71 |
+
Local version without API (SVD Proxy)
|
| 72 |
+
Tongyi Lab, Alibaba
|
| 73 |
+
📄Paper 💻GitHub 🤗HF Model
|
| 74 |
+
""")
|
| 75 |
|
| 76 |
+
with gr.Accordion("Usage Instructions (инструкции)", open=False):
|
| 77 |
+
gr.HTML("""
|
| 78 |
+
‼️Usage (использования) Wan-Animate supports two modes:
|
| 79 |
|
| 80 |
+
* Move Mode: animate the character in input image with movements from the input video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
* Mix Mode: replace the character in input video with the character in input video
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
Wan-Animate supports two modes:
|
| 85 |
|
| 86 |
+
* Move Mode: Use the movements extracted from the input video to drive the character in the input image
|
| 87 |
|
| 88 |
+
* Mix Mode: Use the character in the input image to replace the character in the input video
|
| 89 |
|
| 90 |
+
Currently, the following restrictions apply to inputs:
|
| 91 |
|
| 92 |
+
* Video file size: Less than 200MB
|
| 93 |
|
| 94 |
+
* Video resolution: The shorter side must be greater than 200, and the longer side must be less than 2048
|
| 95 |
|
| 96 |
+
* Video duration: 2s to 30s
|
| 97 |
|
| 98 |
+
* Video aspect ratio: 1:3 to 3:1
|
| 99 |
|
| 100 |
+
* Video formats: mp4, avi, mov
|
| 101 |
|
| 102 |
+
* Image file size: Less than 5MB
|
| 103 |
|
| 104 |
+
* Image resolution: The shorter side must be greater than 200, and the longer side must be less than 4096
|
| 105 |
|
| 106 |
+
* Image formats: jpg, png, jpeg, webp, bmp
|
| 107 |
|
| 108 |
+
Current, the inference quality has two variants. You can use our open-source code for more flexible configuration.
|
| 109 |
|
| 110 |
+
* wan-pro: 25fps, 720p
|
| 111 |
|
| 112 |
+
* wan-std: 15fps, 720p
|
| 113 |
+
""")
|
| 114 |
|
| 115 |
+
with gr.Row():
|
| 116 |
+
with gr.Column():
|
| 117 |
+
ref_img = gr.Image(label="Reference Image (изображение)", type="numpy", sources=["upload"])
|
| 118 |
+
video = gr.Video(label="Template Video (шаблонное видео)", sources=["upload"])
|
| 119 |
+
with gr.Row():
|
| 120 |
+
model_id = gr.Dropdown(label="Mode (режим)", choices=["wan2.2-animate-move", "wan2.2-animate-mix"], value="wan2.2-animate-move")
|
| 121 |
+
model = gr.Dropdown(label="Inference Quality (качество)", choices=["wan-pro", "wan-std"], value="wan-pro")
|
| 122 |
+
run_button = gr.Button("Generate Video (генерировать)")
|
| 123 |
|
| 124 |
+
with gr.Column():
|
| 125 |
+
output_video = gr.Video(label="Output Video (результат)")
|
| 126 |
+
output_status = gr.Textbox(label="Status (статус)")
|
| 127 |
|
| 128 |
+
run_button.click(
|
| 129 |
+
fn=app.predict,
|
| 130 |
+
inputs=[ref_img, video, model_id, model],
|
| 131 |
+
outputs=[output_video, output_status]
|
| 132 |
+
)
|
| 133 |
|
| 134 |
+
demo.queue(default_concurrency_limit=1)
|
| 135 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
start_app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|