Spaces:
Running
on
Zero
Running
on
Zero
Veena
commited on
Commit
·
002a88c
1
Parent(s):
30a893c
Update Maya1 Gradio app with preset characters
Browse files- .gitignore +16 -0
- maya1/__init__.py +7 -0
- maya1/api_v2.py +342 -0
- maya1/constants.py +95 -0
- maya1/model_loader.py +145 -0
- maya1/pipeline.py +128 -0
- maya1/prompt_builder.py +31 -0
- maya1/snac_decoder.py +515 -0
- maya1/streaming_pipeline.py +159 -0
.gitignore
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
*.pyo
|
| 4 |
+
*.pyd
|
| 5 |
+
.Python
|
| 6 |
+
*.so
|
| 7 |
+
*.egg
|
| 8 |
+
*.egg-info/
|
| 9 |
+
dist/
|
| 10 |
+
build/
|
| 11 |
+
.cache/
|
| 12 |
+
.pytest_cache/
|
| 13 |
+
*.wav
|
| 14 |
+
*.mp3
|
| 15 |
+
.DS_Store
|
| 16 |
+
|
maya1/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Maya1 TTS Inference System
|
| 3 |
+
Open-source inference for description-conditioned TTS with emotion control.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
__version__ = "1.0.0"
|
| 7 |
+
__author__ = "Maya Research AI"
|
maya1/api_v2.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import wave
|
| 4 |
+
import time
|
| 5 |
+
from typing import Optional
|
| 6 |
+
from fastapi import FastAPI, HTTPException
|
| 7 |
+
from fastapi.responses import StreamingResponse
|
| 8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
from pydantic import BaseModel, Field
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
|
| 12 |
+
from .model_loader import Maya1Model
|
| 13 |
+
from .prompt_builder import Maya1PromptBuilder
|
| 14 |
+
from .snac_decoder import SNACDecoder
|
| 15 |
+
from .pipeline import Maya1Pipeline
|
| 16 |
+
from .streaming_pipeline import Maya1SlidingWindowPipeline
|
| 17 |
+
from .constants import (
|
| 18 |
+
DEFAULT_TEMPERATURE,
|
| 19 |
+
DEFAULT_TOP_P,
|
| 20 |
+
DEFAULT_MAX_TOKENS,
|
| 21 |
+
DEFAULT_REPETITION_PENALTY,
|
| 22 |
+
AUDIO_SAMPLE_RATE,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Timeout settings (seconds)
|
| 26 |
+
GENERATE_TIMEOUT = 60
|
| 27 |
+
|
| 28 |
+
# Load environment variables
|
| 29 |
+
load_dotenv()
|
| 30 |
+
|
| 31 |
+
# Initialize FastAPI app
|
| 32 |
+
app = FastAPI(
|
| 33 |
+
title="Maya1 TTS API",
|
| 34 |
+
description="Open source TTS inference for Maya1",
|
| 35 |
+
version="1.0.0",
|
| 36 |
+
docs_url=None,
|
| 37 |
+
redoc_url=None,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
app.add_middleware(
|
| 41 |
+
CORSMiddleware,
|
| 42 |
+
allow_origins=["*"],
|
| 43 |
+
allow_credentials=True,
|
| 44 |
+
allow_methods=["*"],
|
| 45 |
+
allow_headers=["*"],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Global state
|
| 49 |
+
model = None
|
| 50 |
+
prompt_builder = None
|
| 51 |
+
snac_decoder = None
|
| 52 |
+
pipeline = None
|
| 53 |
+
streaming_pipeline = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# ============================================================================
|
| 57 |
+
# Startup/Shutdown
|
| 58 |
+
# ============================================================================
|
| 59 |
+
|
| 60 |
+
@app.on_event("startup")
|
| 61 |
+
async def startup_event():
|
| 62 |
+
"""Initialize model on startup."""
|
| 63 |
+
global model, prompt_builder, snac_decoder, pipeline, streaming_pipeline
|
| 64 |
+
|
| 65 |
+
print("\n" + "="*60)
|
| 66 |
+
print(" Starting Maya1 TTS API Server")
|
| 67 |
+
print("="*60 + "\n")
|
| 68 |
+
|
| 69 |
+
# Initialize components
|
| 70 |
+
model = Maya1Model()
|
| 71 |
+
prompt_builder = Maya1PromptBuilder(model.tokenizer, model)
|
| 72 |
+
|
| 73 |
+
# Initialize SNAC decoder
|
| 74 |
+
snac_decoder = SNACDecoder(enable_batching=True, max_batch_size=64, batch_timeout_ms=15)
|
| 75 |
+
await snac_decoder.start_batch_processor()
|
| 76 |
+
|
| 77 |
+
# Initialize pipelines
|
| 78 |
+
pipeline = Maya1Pipeline(model, prompt_builder, snac_decoder)
|
| 79 |
+
streaming_pipeline = Maya1SlidingWindowPipeline(model, prompt_builder, snac_decoder)
|
| 80 |
+
|
| 81 |
+
print("\n" + "="*60)
|
| 82 |
+
print("Maya1 TTS API Server Ready")
|
| 83 |
+
print("="*60 + "\n")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
@app.on_event("shutdown")
|
| 87 |
+
async def shutdown_event():
|
| 88 |
+
"""Cleanup on shutdown."""
|
| 89 |
+
print("\nShutting down Maya1 TTS API Server")
|
| 90 |
+
|
| 91 |
+
if snac_decoder and snac_decoder.is_running:
|
| 92 |
+
await snac_decoder.stop_batch_processor()
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# ============================================================================
|
| 96 |
+
# Utility Functions
|
| 97 |
+
# ============================================================================
|
| 98 |
+
|
| 99 |
+
def create_wav_header(sample_rate: int = 24000, channels: int = 1, bits_per_sample: int = 16, data_size: int = 0) -> bytes:
|
| 100 |
+
"""Create WAV file header."""
|
| 101 |
+
import struct
|
| 102 |
+
|
| 103 |
+
byte_rate = sample_rate * channels * bits_per_sample // 8
|
| 104 |
+
block_align = channels * bits_per_sample // 8
|
| 105 |
+
|
| 106 |
+
header = struct.pack(
|
| 107 |
+
'<4sI4s4sIHHIIHH4sI',
|
| 108 |
+
b'RIFF',
|
| 109 |
+
36 + data_size,
|
| 110 |
+
b'WAVE',
|
| 111 |
+
b'fmt ',
|
| 112 |
+
16,
|
| 113 |
+
1,
|
| 114 |
+
channels,
|
| 115 |
+
sample_rate,
|
| 116 |
+
byte_rate,
|
| 117 |
+
block_align,
|
| 118 |
+
bits_per_sample,
|
| 119 |
+
b'data',
|
| 120 |
+
data_size
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
return header
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# ============================================================================
|
| 127 |
+
# Request/Response Models
|
| 128 |
+
# ============================================================================
|
| 129 |
+
|
| 130 |
+
class TTSRequest(BaseModel):
|
| 131 |
+
"""TTS generation request."""
|
| 132 |
+
description: str = Field(
|
| 133 |
+
...,
|
| 134 |
+
description="Voice description (e.g., 'Male voice in their 30s with american accent')"
|
| 135 |
+
)
|
| 136 |
+
text: str = Field(
|
| 137 |
+
...,
|
| 138 |
+
description="Text to synthesize (can include <emotion> tags)"
|
| 139 |
+
)
|
| 140 |
+
temperature: Optional[float] = Field(
|
| 141 |
+
default=DEFAULT_TEMPERATURE,
|
| 142 |
+
description="Sampling temperature"
|
| 143 |
+
)
|
| 144 |
+
top_p: Optional[float] = Field(
|
| 145 |
+
default=DEFAULT_TOP_P,
|
| 146 |
+
description="Nucleus sampling"
|
| 147 |
+
)
|
| 148 |
+
max_tokens: Optional[int] = Field(
|
| 149 |
+
default=DEFAULT_MAX_TOKENS,
|
| 150 |
+
description="Maximum tokens to generate"
|
| 151 |
+
)
|
| 152 |
+
repetition_penalty: Optional[float] = Field(
|
| 153 |
+
default=DEFAULT_REPETITION_PENALTY,
|
| 154 |
+
description="Repetition penalty"
|
| 155 |
+
)
|
| 156 |
+
seed: Optional[int] = Field(
|
| 157 |
+
default=None,
|
| 158 |
+
description="Random seed for reproducibility",
|
| 159 |
+
ge=0,
|
| 160 |
+
)
|
| 161 |
+
stream: bool = Field(
|
| 162 |
+
default=False,
|
| 163 |
+
description="Stream audio (True) or return complete WAV (False)"
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
# ============================================================================
|
| 168 |
+
# Endpoints
|
| 169 |
+
# ============================================================================
|
| 170 |
+
|
| 171 |
+
@app.get("/")
|
| 172 |
+
async def root():
|
| 173 |
+
"""Root endpoint."""
|
| 174 |
+
return {
|
| 175 |
+
"service": "Maya1 TTS API",
|
| 176 |
+
"version": "1.0.0",
|
| 177 |
+
"status": "running",
|
| 178 |
+
"model": "Maya1-Voice (open source)",
|
| 179 |
+
"endpoints": {
|
| 180 |
+
"generate": "/v1/tts/generate (POST)",
|
| 181 |
+
"health": "/health (GET)",
|
| 182 |
+
},
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@app.get("/health")
|
| 187 |
+
async def health_check():
|
| 188 |
+
"""Health check endpoint."""
|
| 189 |
+
return {
|
| 190 |
+
"status": "healthy",
|
| 191 |
+
"model": "Maya1-Voice",
|
| 192 |
+
"timestamp": time.time(),
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# ============================================================================
|
| 197 |
+
# TTS Generation Endpoint
|
| 198 |
+
# ============================================================================
|
| 199 |
+
|
| 200 |
+
@app.post("/v1/tts/generate")
|
| 201 |
+
async def generate_tts(request: TTSRequest):
|
| 202 |
+
"""Generate TTS audio from description and text."""
|
| 203 |
+
|
| 204 |
+
try:
|
| 205 |
+
# Route to streaming or non-streaming
|
| 206 |
+
if request.stream:
|
| 207 |
+
return await _generate_tts_streaming(
|
| 208 |
+
description=request.description,
|
| 209 |
+
text=request.text,
|
| 210 |
+
temperature=request.temperature,
|
| 211 |
+
top_p=request.top_p,
|
| 212 |
+
max_tokens=request.max_tokens,
|
| 213 |
+
repetition_penalty=request.repetition_penalty,
|
| 214 |
+
seed=request.seed,
|
| 215 |
+
)
|
| 216 |
+
else:
|
| 217 |
+
return await _generate_tts_complete(
|
| 218 |
+
description=request.description,
|
| 219 |
+
text=request.text,
|
| 220 |
+
temperature=request.temperature,
|
| 221 |
+
top_p=request.top_p,
|
| 222 |
+
max_tokens=request.max_tokens,
|
| 223 |
+
repetition_penalty=request.repetition_penalty,
|
| 224 |
+
seed=request.seed,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
except HTTPException:
|
| 228 |
+
raise
|
| 229 |
+
except Exception as e:
|
| 230 |
+
print(f" Error: {e}")
|
| 231 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
async def _generate_tts_complete(
|
| 235 |
+
description: str,
|
| 236 |
+
text: str,
|
| 237 |
+
temperature: float,
|
| 238 |
+
top_p: float,
|
| 239 |
+
max_tokens: int,
|
| 240 |
+
repetition_penalty: float,
|
| 241 |
+
seed: Optional[int],
|
| 242 |
+
):
|
| 243 |
+
"""Generate complete WAV file (non-streaming)."""
|
| 244 |
+
|
| 245 |
+
try:
|
| 246 |
+
import asyncio
|
| 247 |
+
|
| 248 |
+
# Generate audio
|
| 249 |
+
audio_bytes = await asyncio.wait_for(
|
| 250 |
+
pipeline.generate_speech(
|
| 251 |
+
description=description,
|
| 252 |
+
text=text,
|
| 253 |
+
temperature=temperature,
|
| 254 |
+
top_p=top_p,
|
| 255 |
+
max_tokens=max_tokens,
|
| 256 |
+
repetition_penalty=repetition_penalty,
|
| 257 |
+
seed=seed,
|
| 258 |
+
),
|
| 259 |
+
timeout=GENERATE_TIMEOUT
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
if audio_bytes is None:
|
| 263 |
+
raise Exception("Audio generation failed")
|
| 264 |
+
|
| 265 |
+
# Create WAV file
|
| 266 |
+
wav_buffer = io.BytesIO()
|
| 267 |
+
with wave.open(wav_buffer, 'wb') as wav_file:
|
| 268 |
+
wav_file.setnchannels(1)
|
| 269 |
+
wav_file.setsampwidth(2)
|
| 270 |
+
wav_file.setframerate(AUDIO_SAMPLE_RATE)
|
| 271 |
+
wav_file.writeframes(audio_bytes)
|
| 272 |
+
|
| 273 |
+
wav_buffer.seek(0)
|
| 274 |
+
|
| 275 |
+
return StreamingResponse(
|
| 276 |
+
wav_buffer,
|
| 277 |
+
media_type="audio/wav",
|
| 278 |
+
headers={"Content-Disposition": "attachment; filename=output.wav"}
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
except asyncio.TimeoutError:
|
| 282 |
+
raise HTTPException(status_code=504, detail="Generation timeout")
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
async def _generate_tts_streaming(
|
| 286 |
+
description: str,
|
| 287 |
+
text: str,
|
| 288 |
+
temperature: float,
|
| 289 |
+
top_p: float,
|
| 290 |
+
max_tokens: int,
|
| 291 |
+
repetition_penalty: float,
|
| 292 |
+
seed: Optional[int],
|
| 293 |
+
):
|
| 294 |
+
"""Generate streaming audio."""
|
| 295 |
+
start_time = time.time()
|
| 296 |
+
first_audio_time = None
|
| 297 |
+
|
| 298 |
+
async def audio_stream_generator():
|
| 299 |
+
"""Generate audio stream with WAV header."""
|
| 300 |
+
nonlocal first_audio_time
|
| 301 |
+
|
| 302 |
+
# Send WAV header first
|
| 303 |
+
yield create_wav_header(sample_rate=AUDIO_SAMPLE_RATE, channels=1, bits_per_sample=16)
|
| 304 |
+
|
| 305 |
+
# Stream audio chunks
|
| 306 |
+
async for audio_chunk in streaming_pipeline.generate_speech_stream(
|
| 307 |
+
description=description,
|
| 308 |
+
text=text,
|
| 309 |
+
temperature=temperature,
|
| 310 |
+
top_p=top_p,
|
| 311 |
+
max_tokens=max_tokens,
|
| 312 |
+
repetition_penalty=repetition_penalty,
|
| 313 |
+
seed=seed,
|
| 314 |
+
):
|
| 315 |
+
if first_audio_time is None:
|
| 316 |
+
first_audio_time = time.time()
|
| 317 |
+
ttfb_ms = (first_audio_time - start_time) * 1000
|
| 318 |
+
print(f"⏱️ TTFB: {ttfb_ms:.1f}ms")
|
| 319 |
+
|
| 320 |
+
yield audio_chunk
|
| 321 |
+
|
| 322 |
+
try:
|
| 323 |
+
return StreamingResponse(
|
| 324 |
+
audio_stream_generator(),
|
| 325 |
+
media_type="audio/wav",
|
| 326 |
+
headers={"Cache-Control": "no-cache"}
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
except Exception as e:
|
| 330 |
+
print(f"Streaming error: {e}")
|
| 331 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
# For running directly
|
| 335 |
+
if __name__ == "__main__":
|
| 336 |
+
import uvicorn
|
| 337 |
+
uvicorn.run(
|
| 338 |
+
app,
|
| 339 |
+
host="0.0.0.0",
|
| 340 |
+
port=8000,
|
| 341 |
+
log_level="info"
|
| 342 |
+
)
|
maya1/constants.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Maya1 Constants
|
| 3 |
+
Token IDs and special tokens used in the model.
|
| 4 |
+
Matches training configuration exactly.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
# Special control tokens
|
| 8 |
+
SOH_ID = 128259 # Start of Human turn
|
| 9 |
+
EOH_ID = 128260 # End of Human turn
|
| 10 |
+
SOA_ID = 128261 # Start of AI turn
|
| 11 |
+
EOA_ID = 128262 # End of AI turn (not used in maya1)
|
| 12 |
+
PAD_ID = 128263 # Padding token
|
| 13 |
+
|
| 14 |
+
# Text tokens
|
| 15 |
+
BOS_ID = 128000 # Begin of sequence (Llama BOS)
|
| 16 |
+
TEXT_EOT_ID = 128009 # End of text (appears in prefix, not a stop token!)
|
| 17 |
+
|
| 18 |
+
# Audio tokens
|
| 19 |
+
CODE_START_TOKEN_ID = 128257 # SOS - Start of Speech
|
| 20 |
+
CODE_END_TOKEN_ID = 128258 # EOS - End of Speech (audio stop token)
|
| 21 |
+
CODE_TOKEN_OFFSET = 128266 # Start of SNAC codes
|
| 22 |
+
|
| 23 |
+
# SNAC token range
|
| 24 |
+
SNAC_MIN_ID = 128266
|
| 25 |
+
SNAC_MAX_ID = 156937 # 128266 + (7 * 4096) - 1
|
| 26 |
+
|
| 27 |
+
# Stop tokens for generation
|
| 28 |
+
# CRITICAL: Only use CODE_END_TOKEN_ID (128258) for audio generation
|
| 29 |
+
# TEXT_EOT_ID (128009) appears in prefix and should NOT stop generation
|
| 30 |
+
TRAINING_STOP_TOKEN_IDS = [CODE_END_TOKEN_ID] # [128258]
|
| 31 |
+
ALL_POSSIBLE_STOP_TOKENS = [TEXT_EOT_ID, CODE_END_TOKEN_ID] # For reference only
|
| 32 |
+
|
| 33 |
+
# 20 Extended Emotion Tags (must be single tokens)
|
| 34 |
+
ALL_EMOTION_TAGS = [
|
| 35 |
+
'<angry>',
|
| 36 |
+
'<appalled>',
|
| 37 |
+
'<chuckle>',
|
| 38 |
+
'<cry>',
|
| 39 |
+
'<curious>',
|
| 40 |
+
'<disappointed>',
|
| 41 |
+
'<excited>',
|
| 42 |
+
'<exhale>',
|
| 43 |
+
'<gasp>',
|
| 44 |
+
'<giggle>',
|
| 45 |
+
'<gulp>',
|
| 46 |
+
'<laugh>',
|
| 47 |
+
'<laugh_harder>',
|
| 48 |
+
'<mischievous>',
|
| 49 |
+
'<sarcastic>',
|
| 50 |
+
'<scream>',
|
| 51 |
+
'<sigh>',
|
| 52 |
+
'<sing>',
|
| 53 |
+
'<snort>',
|
| 54 |
+
'<whisper>',
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
# Model configuration
|
| 58 |
+
DEFAULT_MODEL_PATH = "maya-research/maya1"
|
| 59 |
+
DEFAULT_CHECKPOINT = "checkpoint-25000"
|
| 60 |
+
DEFAULT_MAX_MODEL_LEN = 8192
|
| 61 |
+
|
| 62 |
+
# SNAC configuration
|
| 63 |
+
SNAC_MODEL_NAME = "hubertsiuzdak/snac_24khz"
|
| 64 |
+
SNAC_SAMPLE_RATE = 24000
|
| 65 |
+
SNAC_TOKENS_PER_FRAME = 7
|
| 66 |
+
SNAC_LEVELS = 3
|
| 67 |
+
|
| 68 |
+
# Audio configuration
|
| 69 |
+
AUDIO_SAMPLE_RATE = 24000
|
| 70 |
+
AUDIO_CHANNELS = 1
|
| 71 |
+
AUDIO_BITS_PER_SAMPLE = 16
|
| 72 |
+
|
| 73 |
+
# Generation defaults
|
| 74 |
+
DEFAULT_TEMPERATURE = 0.4 # Lower temp for more stable generation
|
| 75 |
+
DEFAULT_TOP_P = 0.9
|
| 76 |
+
DEFAULT_MAX_TOKENS = 2048 # Reasonable default for most use cases
|
| 77 |
+
DEFAULT_MIN_TOKENS = 28 # At least 4 SNAC frames
|
| 78 |
+
DEFAULT_REPETITION_PENALTY = 1.1
|
| 79 |
+
DEFAULT_SEED = None # None = random, set integer for reproducibility
|
| 80 |
+
|
| 81 |
+
# IMPORTANT: Emotion tags consume audio time!
|
| 82 |
+
# <laugh> = ~4-6 seconds (~300-400 tokens)
|
| 83 |
+
# <excited>, <chuckle> = ~1-2 seconds (~50-150 tokens)
|
| 84 |
+
|
| 85 |
+
# Recommended max_tokens by use case:
|
| 86 |
+
# - Short phrases (< 10 words): 150-250 tokens (~3-5s)
|
| 87 |
+
# - Medium text (10-30 words): 250-500 tokens (~5-10s)
|
| 88 |
+
# - Long text (30+ words): 500-1500 tokens (~10-30s)
|
| 89 |
+
# - Very long text: 1500-2000 tokens (~30-42s)
|
| 90 |
+
# Note: 1 second ≈ 48 tokens (7 tokens/frame * 6.86 frames/sec)
|
| 91 |
+
|
| 92 |
+
# Streaming configuration
|
| 93 |
+
STREAM_BUFFER_SIZE = 28 # 4 frames (process every 28 tokens)
|
| 94 |
+
SNAC_BATCH_SIZE = 64
|
| 95 |
+
SNAC_BATCH_TIMEOUT_MS = 15
|
maya1/model_loader.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Maya1 Model Loader
|
| 3 |
+
Loads Maya1 model with vLLM engine and validates emotion tags.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
|
| 9 |
+
from .constants import (
|
| 10 |
+
ALL_EMOTION_TAGS,
|
| 11 |
+
DEFAULT_MAX_MODEL_LEN,
|
| 12 |
+
SOH_ID, EOH_ID, SOA_ID, BOS_ID, TEXT_EOT_ID, CODE_START_TOKEN_ID,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Maya1Model:
|
| 17 |
+
"""Maya1 TTS Model with vLLM inference engine."""
|
| 18 |
+
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
model_path: str = None,
|
| 22 |
+
dtype: str = "bfloat16",
|
| 23 |
+
max_model_len: int = DEFAULT_MAX_MODEL_LEN,
|
| 24 |
+
gpu_memory_utilization: float = 0.85,
|
| 25 |
+
tensor_parallel_size: int = 1,
|
| 26 |
+
**engine_kwargs
|
| 27 |
+
):
|
| 28 |
+
"""
|
| 29 |
+
Initialize Maya1 model with vLLM.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
model_path: Path to checkpoint (local or HF repo)
|
| 33 |
+
dtype: Model precision (bfloat16 recommended)
|
| 34 |
+
max_model_len: Maximum sequence length
|
| 35 |
+
gpu_memory_utilization: GPU memory fraction
|
| 36 |
+
tensor_parallel_size: Number of GPUs
|
| 37 |
+
"""
|
| 38 |
+
# Use provided path or environment variable or default
|
| 39 |
+
if model_path is None:
|
| 40 |
+
model_path = os.environ.get(
|
| 41 |
+
'MAYA1_MODEL_PATH',
|
| 42 |
+
os.path.expanduser('~/models/maya1-voice')
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
self.model_path = model_path
|
| 46 |
+
self.dtype = dtype
|
| 47 |
+
|
| 48 |
+
print(f"Initializing Maya1 Model")
|
| 49 |
+
print(f"Model: {model_path}")
|
| 50 |
+
|
| 51 |
+
# Load tokenizer
|
| 52 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 53 |
+
model_path,
|
| 54 |
+
trust_remote_code=True,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
print(f"Tokenizer loaded: {len(self.tokenizer)} tokens")
|
| 58 |
+
|
| 59 |
+
# Validate emotion tags
|
| 60 |
+
self._validate_emotion_tags()
|
| 61 |
+
|
| 62 |
+
# Precompute special token strings
|
| 63 |
+
self._init_special_tokens()
|
| 64 |
+
|
| 65 |
+
# Initialize vLLM engine
|
| 66 |
+
print(f"Initializing vLLM engine...")
|
| 67 |
+
engine_args = AsyncEngineArgs(
|
| 68 |
+
model=model_path,
|
| 69 |
+
tokenizer=model_path,
|
| 70 |
+
dtype=dtype,
|
| 71 |
+
max_model_len=max_model_len,
|
| 72 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 73 |
+
tensor_parallel_size=tensor_parallel_size,
|
| 74 |
+
trust_remote_code=True,
|
| 75 |
+
disable_log_stats=False,
|
| 76 |
+
**engine_kwargs
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
|
| 80 |
+
|
| 81 |
+
print(f"Maya1 Model ready\n")
|
| 82 |
+
|
| 83 |
+
def _validate_emotion_tags(self):
|
| 84 |
+
"""Validate that all 20 emotion tags are single tokens."""
|
| 85 |
+
failed_tags = []
|
| 86 |
+
for tag in ALL_EMOTION_TAGS:
|
| 87 |
+
token_ids = self.tokenizer.encode(tag, add_special_tokens=False)
|
| 88 |
+
if len(token_ids) != 1:
|
| 89 |
+
failed_tags.append((tag, len(token_ids)))
|
| 90 |
+
|
| 91 |
+
if failed_tags:
|
| 92 |
+
print(f"ERROR: {len(failed_tags)} emotion tags are NOT single tokens!")
|
| 93 |
+
raise AssertionError(f"Emotion tags validation failed")
|
| 94 |
+
|
| 95 |
+
print(f"All {len(ALL_EMOTION_TAGS)} emotion tags validated")
|
| 96 |
+
|
| 97 |
+
def _init_special_tokens(self):
|
| 98 |
+
"""Precompute special token strings for fast prefix building."""
|
| 99 |
+
self.soh_token = self.tokenizer.decode([SOH_ID])
|
| 100 |
+
self.bos_token = self.tokenizer.bos_token
|
| 101 |
+
self.eot_token = self.tokenizer.decode([TEXT_EOT_ID])
|
| 102 |
+
self.eoh_token = self.tokenizer.decode([EOH_ID])
|
| 103 |
+
self.soa_token = self.tokenizer.decode([SOA_ID])
|
| 104 |
+
self.sos_token = self.tokenizer.decode([CODE_START_TOKEN_ID])
|
| 105 |
+
|
| 106 |
+
async def generate(self, prompt: str, sampling_params: SamplingParams):
|
| 107 |
+
"""
|
| 108 |
+
Generate tokens from prompt (non-streaming).
|
| 109 |
+
Args:
|
| 110 |
+
prompt: Input prompt
|
| 111 |
+
sampling_params: vLLM sampling parameters
|
| 112 |
+
Returns:
|
| 113 |
+
Generated output from vLLM
|
| 114 |
+
"""
|
| 115 |
+
request_id = f"req_{id(prompt)}"
|
| 116 |
+
|
| 117 |
+
# Collect results from async generator
|
| 118 |
+
final_output = None
|
| 119 |
+
async for output in self.engine.generate(
|
| 120 |
+
prompt=prompt,
|
| 121 |
+
sampling_params=sampling_params,
|
| 122 |
+
request_id=request_id
|
| 123 |
+
):
|
| 124 |
+
final_output = output
|
| 125 |
+
|
| 126 |
+
return [final_output] if final_output else []
|
| 127 |
+
|
| 128 |
+
async def generate_stream(self, prompt: str, sampling_params: SamplingParams):
|
| 129 |
+
"""
|
| 130 |
+
Generate tokens from prompt (streaming).
|
| 131 |
+
Args:
|
| 132 |
+
prompt: Input prompt
|
| 133 |
+
sampling_params: vLLM sampling parameters
|
| 134 |
+
Yields:
|
| 135 |
+
Generated outputs from vLLM
|
| 136 |
+
"""
|
| 137 |
+
request_id = f"req_{id(prompt)}"
|
| 138 |
+
|
| 139 |
+
# Stream from engine
|
| 140 |
+
async for output in self.engine.generate(
|
| 141 |
+
prompt=prompt,
|
| 142 |
+
sampling_params=sampling_params,
|
| 143 |
+
request_id=request_id
|
| 144 |
+
):
|
| 145 |
+
yield output
|
maya1/pipeline.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Maya1 Generation Pipeline
|
| 3 |
+
End-to-end pipeline for TTS generation (non-streaming).
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import asyncio
|
| 7 |
+
from typing import Optional, List
|
| 8 |
+
from vllm import SamplingParams
|
| 9 |
+
|
| 10 |
+
from .constants import (
|
| 11 |
+
CODE_END_TOKEN_ID,
|
| 12 |
+
CODE_START_TOKEN_ID,
|
| 13 |
+
SNAC_MIN_ID,
|
| 14 |
+
SNAC_MAX_ID,
|
| 15 |
+
DEFAULT_TEMPERATURE,
|
| 16 |
+
DEFAULT_TOP_P,
|
| 17 |
+
DEFAULT_MAX_TOKENS,
|
| 18 |
+
DEFAULT_MIN_TOKENS,
|
| 19 |
+
DEFAULT_REPETITION_PENALTY,
|
| 20 |
+
DEFAULT_SEED,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Maya1Pipeline:
|
| 25 |
+
"""End-to-end TTS pipeline for Maya1."""
|
| 26 |
+
|
| 27 |
+
def __init__(self, model, prompt_builder, snac_decoder):
|
| 28 |
+
"""
|
| 29 |
+
Initialize pipeline.
|
| 30 |
+
Args:
|
| 31 |
+
model: Maya1Model instance
|
| 32 |
+
prompt_builder: Maya1PromptBuilder instance
|
| 33 |
+
snac_decoder: SNACDecoder instance
|
| 34 |
+
"""
|
| 35 |
+
self.model = model
|
| 36 |
+
self.prompt_builder = prompt_builder
|
| 37 |
+
self.snac_decoder = snac_decoder
|
| 38 |
+
print(f"✅ Maya1Pipeline initialized")
|
| 39 |
+
|
| 40 |
+
async def generate_speech(
|
| 41 |
+
self,
|
| 42 |
+
description: str,
|
| 43 |
+
text: str,
|
| 44 |
+
temperature: float = DEFAULT_TEMPERATURE,
|
| 45 |
+
top_p: float = DEFAULT_TOP_P,
|
| 46 |
+
max_tokens: int = DEFAULT_MAX_TOKENS,
|
| 47 |
+
repetition_penalty: float = DEFAULT_REPETITION_PENALTY,
|
| 48 |
+
seed: Optional[int] = None,
|
| 49 |
+
) -> Optional[bytes]:
|
| 50 |
+
"""
|
| 51 |
+
Generate speech audio (non-streaming).
|
| 52 |
+
Args:
|
| 53 |
+
description: Voice description
|
| 54 |
+
text: Text to synthesize (may include <emotion> tags)
|
| 55 |
+
temperature: Sampling temperature
|
| 56 |
+
top_p: Nucleus sampling
|
| 57 |
+
max_tokens: Max SNAC tokens to generate
|
| 58 |
+
repetition_penalty: Prevent loops
|
| 59 |
+
seed: Random seed for reproducibility
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
Audio bytes (int16 PCM, 24kHz mono) or None if failed
|
| 63 |
+
"""
|
| 64 |
+
# Build prompt
|
| 65 |
+
prompt = self.prompt_builder.build_prefix(description, text)
|
| 66 |
+
|
| 67 |
+
# Configure sampling
|
| 68 |
+
sampling_params = SamplingParams(
|
| 69 |
+
temperature=temperature,
|
| 70 |
+
top_p=top_p,
|
| 71 |
+
max_tokens=max_tokens,
|
| 72 |
+
min_tokens=DEFAULT_MIN_TOKENS,
|
| 73 |
+
repetition_penalty=repetition_penalty,
|
| 74 |
+
stop_token_ids=[CODE_END_TOKEN_ID],
|
| 75 |
+
seed=seed if seed is not None else DEFAULT_SEED,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Generate tokens
|
| 79 |
+
outputs = await self.model.generate(prompt, sampling_params)
|
| 80 |
+
|
| 81 |
+
if not outputs or len(outputs) == 0:
|
| 82 |
+
return None
|
| 83 |
+
|
| 84 |
+
output = outputs[0]
|
| 85 |
+
generated_token_ids = output.outputs[0].token_ids
|
| 86 |
+
|
| 87 |
+
# Extract SNAC codes
|
| 88 |
+
snac_codes = self._extract_snac_codes(generated_token_ids)
|
| 89 |
+
|
| 90 |
+
if not snac_codes:
|
| 91 |
+
return None
|
| 92 |
+
|
| 93 |
+
# Decode to audio
|
| 94 |
+
audio_bytes = await self.snac_decoder.decode_single_async(snac_codes)
|
| 95 |
+
|
| 96 |
+
if audio_bytes:
|
| 97 |
+
frames = len(snac_codes) // 7
|
| 98 |
+
duration_sec = frames / 6.86
|
| 99 |
+
print(f" Generated {frames} frames (~{duration_sec:.1f}s audio)")
|
| 100 |
+
|
| 101 |
+
return audio_bytes
|
| 102 |
+
|
| 103 |
+
def _extract_snac_codes(self, token_ids: List[int]) -> List[int]:
|
| 104 |
+
# Find SOS and EOS positions
|
| 105 |
+
try:
|
| 106 |
+
sos_idx = token_ids.index(CODE_START_TOKEN_ID)
|
| 107 |
+
except ValueError:
|
| 108 |
+
sos_idx = -1
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
eos_idx = token_ids.index(CODE_END_TOKEN_ID)
|
| 112 |
+
except ValueError:
|
| 113 |
+
eos_idx = len(token_ids)
|
| 114 |
+
|
| 115 |
+
# Extract tokens between SOS and EOS
|
| 116 |
+
if sos_idx >= 0:
|
| 117 |
+
snac_tokens = token_ids[sos_idx + 1:eos_idx]
|
| 118 |
+
else:
|
| 119 |
+
# If no SOS found, take everything before EOS
|
| 120 |
+
snac_tokens = token_ids[:eos_idx]
|
| 121 |
+
|
| 122 |
+
# Filter to only valid SNAC token IDs
|
| 123 |
+
snac_codes = [
|
| 124 |
+
token_id for token_id in snac_tokens
|
| 125 |
+
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
return snac_codes
|
maya1/prompt_builder.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Maya1 Prompt Builder
|
| 3 |
+
Builds formatted prompts for description-conditioned TTS.
|
| 4 |
+
Format: <SOH><BOS><description="..."> text<EOT><EOH><SOA><SOS>
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from .constants import ALL_EMOTION_TAGS
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Maya1PromptBuilder:
|
| 11 |
+
"""Builds prompts in the format expected by Maya1 model."""
|
| 12 |
+
|
| 13 |
+
def __init__(self, tokenizer, model):
|
| 14 |
+
self.tokenizer = tokenizer
|
| 15 |
+
self.model = model
|
| 16 |
+
|
| 17 |
+
def build_prefix(self, description: str, text: str) -> str:
|
| 18 |
+
# Format as: <description="..."> text
|
| 19 |
+
formatted_text = f'<description="{description}"> {text}'
|
| 20 |
+
# Build full prefix with special tokens
|
| 21 |
+
prompt = (
|
| 22 |
+
self.model.soh_token +
|
| 23 |
+
self.model.bos_token +
|
| 24 |
+
formatted_text +
|
| 25 |
+
self.model.eot_token +
|
| 26 |
+
self.model.eoh_token +
|
| 27 |
+
self.model.soa_token +
|
| 28 |
+
self.model.sos_token
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
return prompt
|
maya1/snac_decoder.py
ADDED
|
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import asyncio
|
| 4 |
+
from typing import List, Optional, Tuple
|
| 5 |
+
from snac import SNAC
|
| 6 |
+
|
| 7 |
+
from .constants import (
|
| 8 |
+
CODE_END_TOKEN_ID,
|
| 9 |
+
CODE_TOKEN_OFFSET,
|
| 10 |
+
SNAC_MODEL_NAME,
|
| 11 |
+
SNAC_SAMPLE_RATE,
|
| 12 |
+
SNAC_TOKENS_PER_FRAME,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class SNACDecoder:
|
| 17 |
+
"""
|
| 18 |
+
SNAC Decoder for maya1.
|
| 19 |
+
Unpacks 7-token SNAC frames and decodes to audio waveforms.
|
| 20 |
+
Unpacking logic is the EXACT INVERSE of training preprocessing.
|
| 21 |
+
Supports async batching for concurrent requests.
|
| 22 |
+
CRITICAL: Any mismatch in unpacking will produce garbage audio.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
device: str = "cuda",
|
| 28 |
+
compile_decoder: bool = False,
|
| 29 |
+
enable_batching: bool = False,
|
| 30 |
+
max_batch_size: int = 64,
|
| 31 |
+
batch_timeout_ms: int = 15,
|
| 32 |
+
):
|
| 33 |
+
"""
|
| 34 |
+
Initialize SNAC decoder.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
device: Device for SNAC model (cuda/cpu)
|
| 38 |
+
compile_decoder: Use torch.compile for speedup
|
| 39 |
+
enable_batching: Enable async batching
|
| 40 |
+
max_batch_size: Max sequences to batch together
|
| 41 |
+
batch_timeout_ms: Max wait time before processing batch
|
| 42 |
+
"""
|
| 43 |
+
self.device = device
|
| 44 |
+
self.enable_batching = enable_batching
|
| 45 |
+
self.max_batch_size = max_batch_size
|
| 46 |
+
self.batch_timeout_ms = batch_timeout_ms
|
| 47 |
+
|
| 48 |
+
print(f"Loading SNAC 24kHz model to {device}...")
|
| 49 |
+
self.snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(device)
|
| 50 |
+
|
| 51 |
+
if compile_decoder:
|
| 52 |
+
print(f"Compiling SNAC decoder with torch.compile...")
|
| 53 |
+
self._compile_model()
|
| 54 |
+
|
| 55 |
+
# Batching infrastructure
|
| 56 |
+
if enable_batching:
|
| 57 |
+
self.request_queue = asyncio.Queue()
|
| 58 |
+
self.batch_processor_task = None
|
| 59 |
+
self._running = False
|
| 60 |
+
print(f"Batching enabled (max_batch={max_batch_size}, timeout={batch_timeout_ms}ms)")
|
| 61 |
+
|
| 62 |
+
print(f"SNAC decoder initialized")
|
| 63 |
+
|
| 64 |
+
def _compile_model(self):
|
| 65 |
+
"""Compile SNAC decoder with torch.compile"""
|
| 66 |
+
# Warm up with various sizes
|
| 67 |
+
for frames in [4, 16, 32]:
|
| 68 |
+
dummy_codes = [
|
| 69 |
+
torch.randint(0, 4096, (1, frames), device=self.device),
|
| 70 |
+
torch.randint(0, 4096, (1, frames * 2), device=self.device),
|
| 71 |
+
torch.randint(0, 4096, (1, frames * 4), device=self.device),
|
| 72 |
+
]
|
| 73 |
+
with torch.inference_mode():
|
| 74 |
+
z_q = self.snac_model.quantizer.from_codes(dummy_codes)
|
| 75 |
+
_ = self.snac_model.decoder(z_q)
|
| 76 |
+
|
| 77 |
+
# Apply compilation
|
| 78 |
+
self.snac_model.decoder = torch.compile(
|
| 79 |
+
self.snac_model.decoder,
|
| 80 |
+
mode="max-autotune"
|
| 81 |
+
)
|
| 82 |
+
self.snac_model.quantizer = torch.compile(
|
| 83 |
+
self.snac_model.quantizer,
|
| 84 |
+
mode="reduce-overhead"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
print(f"SNAC decoder compiled")
|
| 88 |
+
|
| 89 |
+
def unpack_snac_from_7(self, vocab_ids: List[int]) -> List[List[int]]:
|
| 90 |
+
"""
|
| 91 |
+
Unpack 7-token SNAC frames to 3 hierarchical levels.
|
| 92 |
+
|
| 93 |
+
This is the EXACT INVERSE of the training preprocessing function
|
| 94 |
+
`pack_snac_to_7_and_offset()`.
|
| 95 |
+
|
| 96 |
+
Frame structure:
|
| 97 |
+
[slot0, slot1, slot2, slot3, slot4, slot5, slot6]
|
| 98 |
+
|
| 99 |
+
Unpacking:
|
| 100 |
+
- slot0: L1[i]
|
| 101 |
+
- slot1: L2[2*i] (even index)
|
| 102 |
+
- slot2: L3[4*i + 0]
|
| 103 |
+
- slot3: L3[4*i + 1]
|
| 104 |
+
- slot4: L2[2*i + 1] (odd index)
|
| 105 |
+
- slot5: L3[4*i + 2]
|
| 106 |
+
- slot6: L3[4*i + 3]
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
vocab_ids: List of SNAC token IDs (128266-156937)
|
| 110 |
+
Must be divisible by 7
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
[L1, L2, L3] where:
|
| 114 |
+
L1: n elements (coarse level)
|
| 115 |
+
L2: 2n elements (medium level)
|
| 116 |
+
L3: 4n elements (fine level)
|
| 117 |
+
"""
|
| 118 |
+
# Strip EOS token if present
|
| 119 |
+
if vocab_ids and vocab_ids[-1] == CODE_END_TOKEN_ID:
|
| 120 |
+
vocab_ids = vocab_ids[:-1]
|
| 121 |
+
|
| 122 |
+
# Ensure complete frames (divisible by 7)
|
| 123 |
+
frames = len(vocab_ids) // SNAC_TOKENS_PER_FRAME
|
| 124 |
+
vocab_ids = vocab_ids[:frames * SNAC_TOKENS_PER_FRAME]
|
| 125 |
+
|
| 126 |
+
if frames == 0:
|
| 127 |
+
return [[], [], []]
|
| 128 |
+
|
| 129 |
+
l1, l2, l3 = [], [], []
|
| 130 |
+
|
| 131 |
+
for i in range(frames):
|
| 132 |
+
# Extract 7 slots for this frame
|
| 133 |
+
slots = vocab_ids[i*7:(i+1)*7]
|
| 134 |
+
|
| 135 |
+
# Subtract offset (128266) and mod 4096 to get original codes
|
| 136 |
+
# Each level uses 4096 codes (0-4095)
|
| 137 |
+
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
|
| 138 |
+
l2.extend([
|
| 139 |
+
(slots[1] - CODE_TOKEN_OFFSET) % 4096, # Even index
|
| 140 |
+
(slots[4] - CODE_TOKEN_OFFSET) % 4096, # Odd index
|
| 141 |
+
])
|
| 142 |
+
l3.extend([
|
| 143 |
+
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
|
| 144 |
+
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
|
| 145 |
+
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
|
| 146 |
+
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
|
| 147 |
+
])
|
| 148 |
+
|
| 149 |
+
return [l1, l2, l3]
|
| 150 |
+
|
| 151 |
+
@torch.inference_mode()
|
| 152 |
+
def decode(
|
| 153 |
+
self,
|
| 154 |
+
snac_tokens: List[int],
|
| 155 |
+
trim_warmup: bool = True,
|
| 156 |
+
trim_amount: Optional[int] = None,
|
| 157 |
+
use_sliding_window: bool = False
|
| 158 |
+
) -> Optional[np.ndarray]:
|
| 159 |
+
"""
|
| 160 |
+
Decode SNAC tokens to audio waveform.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
snac_tokens: List of SNAC token IDs (7*n tokens)
|
| 164 |
+
trim_warmup: Whether to trim SNAC warmup samples (default: True)
|
| 165 |
+
trim_amount: Number of samples to trim (default: 2048 for first chunk, 0 for others)
|
| 166 |
+
Can be set to a smaller value (e.g., 512) for intermediate chunks
|
| 167 |
+
use_sliding_window: If True, only return middle 2048 samples (for sliding window streaming)
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
Audio waveform as numpy array (float32, 24kHz mono)
|
| 171 |
+
Shape: (samples,)
|
| 172 |
+
Returns None if not enough tokens
|
| 173 |
+
"""
|
| 174 |
+
if len(snac_tokens) < SNAC_TOKENS_PER_FRAME:
|
| 175 |
+
print(f"Not enough SNAC tokens: {len(snac_tokens)} < {SNAC_TOKENS_PER_FRAME}")
|
| 176 |
+
return None
|
| 177 |
+
|
| 178 |
+
# Unpack to 3 levels
|
| 179 |
+
levels = self.unpack_snac_from_7(snac_tokens)
|
| 180 |
+
|
| 181 |
+
if not levels[0]: # No frames after unpacking
|
| 182 |
+
return None
|
| 183 |
+
|
| 184 |
+
# Convert to tensors
|
| 185 |
+
codes = [
|
| 186 |
+
torch.tensor(level, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 187 |
+
for level in levels
|
| 188 |
+
]
|
| 189 |
+
|
| 190 |
+
# Decode through SNAC
|
| 191 |
+
z_q = self.snac_model.quantizer.from_codes(codes)
|
| 192 |
+
audio = self.snac_model.decoder(z_q)
|
| 193 |
+
|
| 194 |
+
# Extract audio (remove padding if any)
|
| 195 |
+
# SNAC decoder outputs: [batch, 1, samples]
|
| 196 |
+
audio = audio[0, 0].cpu().numpy()
|
| 197 |
+
|
| 198 |
+
# Sliding window mode: only keep middle 2048 samples
|
| 199 |
+
# This eliminates popping/cracking when using overlapping 28-token windows
|
| 200 |
+
if use_sliding_window:
|
| 201 |
+
if len(audio) >= 4096:
|
| 202 |
+
audio = audio[2048:4096] # Keep middle portion only
|
| 203 |
+
else:
|
| 204 |
+
# For shorter audio, keep everything (final chunk)
|
| 205 |
+
pass
|
| 206 |
+
else:
|
| 207 |
+
# Standard mode: trim warm-up samples
|
| 208 |
+
# Default: 2048 samples for first chunk, 0 for subsequent chunks
|
| 209 |
+
# Can be customized via trim_amount parameter
|
| 210 |
+
if trim_warmup:
|
| 211 |
+
if trim_amount is None:
|
| 212 |
+
trim_amount = 2048 # Default full trim
|
| 213 |
+
|
| 214 |
+
if len(audio) > trim_amount:
|
| 215 |
+
audio = audio[trim_amount:]
|
| 216 |
+
|
| 217 |
+
return audio
|
| 218 |
+
|
| 219 |
+
def decode_to_bytes(
|
| 220 |
+
self,
|
| 221 |
+
snac_tokens: List[int],
|
| 222 |
+
trim_warmup: bool = True,
|
| 223 |
+
use_sliding_window: bool = False
|
| 224 |
+
) -> Optional[bytes]:
|
| 225 |
+
"""
|
| 226 |
+
Decode SNAC tokens to audio bytes (int16 PCM).
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
snac_tokens: List of SNAC token IDs
|
| 230 |
+
trim_warmup: Whether to trim SNAC warmup samples (default: True)
|
| 231 |
+
use_sliding_window: If True, only return middle 2048 samples (for sliding window streaming)
|
| 232 |
+
|
| 233 |
+
Returns:
|
| 234 |
+
Audio as bytes (int16 PCM, 24kHz mono)
|
| 235 |
+
Returns None if decode fails
|
| 236 |
+
"""
|
| 237 |
+
audio = self.decode(snac_tokens, trim_warmup=trim_warmup, use_sliding_window=use_sliding_window)
|
| 238 |
+
|
| 239 |
+
if audio is None:
|
| 240 |
+
return None
|
| 241 |
+
|
| 242 |
+
# Convert float32 to int16 PCM
|
| 243 |
+
audio_int16 = (audio * 32767).astype(np.int16)
|
| 244 |
+
|
| 245 |
+
return audio_int16.tobytes()
|
| 246 |
+
|
| 247 |
+
def validate_tokens(self, snac_tokens: List[int]) -> bool:
|
| 248 |
+
"""
|
| 249 |
+
Validate SNAC tokens before decoding.
|
| 250 |
+
Args:
|
| 251 |
+
snac_tokens: List of SNAC token IDs
|
| 252 |
+
Returns:
|
| 253 |
+
True if valid, False otherwise
|
| 254 |
+
"""
|
| 255 |
+
# Check minimum length
|
| 256 |
+
if len(snac_tokens) < SNAC_TOKENS_PER_FRAME:
|
| 257 |
+
print(f"Too few tokens: {len(snac_tokens)}")
|
| 258 |
+
return False
|
| 259 |
+
|
| 260 |
+
# Check divisibility by 7
|
| 261 |
+
if len(snac_tokens) % SNAC_TOKENS_PER_FRAME != 0:
|
| 262 |
+
print(f" Warning: Token count {len(snac_tokens)} not divisible by 7")
|
| 263 |
+
print(f" Will truncate to {(len(snac_tokens) // 7) * 7}")
|
| 264 |
+
|
| 265 |
+
# Check token range
|
| 266 |
+
for i, token_id in enumerate(snac_tokens):
|
| 267 |
+
if token_id < CODE_TOKEN_OFFSET or token_id > 156937:
|
| 268 |
+
print(f" Invalid token at position {i}: {token_id}")
|
| 269 |
+
print(f" Expected range: [{CODE_TOKEN_OFFSET}, 156937]")
|
| 270 |
+
return False
|
| 271 |
+
|
| 272 |
+
return True
|
| 273 |
+
|
| 274 |
+
# ========== Async Batching Methods ==========
|
| 275 |
+
|
| 276 |
+
@property
|
| 277 |
+
def is_running(self) -> bool:
|
| 278 |
+
"""Check if batch processor is running."""
|
| 279 |
+
return self._running if self.enable_batching else False
|
| 280 |
+
|
| 281 |
+
async def start_batch_processor(self):
|
| 282 |
+
"""Start the background batch processor task."""
|
| 283 |
+
if not self.enable_batching:
|
| 284 |
+
return
|
| 285 |
+
|
| 286 |
+
if self._running:
|
| 287 |
+
print("Batch processor already running")
|
| 288 |
+
return
|
| 289 |
+
|
| 290 |
+
self._running = True
|
| 291 |
+
self.batch_processor_task = asyncio.create_task(self._batch_processor_loop())
|
| 292 |
+
print("Batch processor started")
|
| 293 |
+
|
| 294 |
+
async def stop_batch_processor(self):
|
| 295 |
+
"""Stop the background batch processor task."""
|
| 296 |
+
if not self.enable_batching:
|
| 297 |
+
return
|
| 298 |
+
|
| 299 |
+
if not self._running:
|
| 300 |
+
return
|
| 301 |
+
|
| 302 |
+
self._running = False
|
| 303 |
+
|
| 304 |
+
if self.batch_processor_task:
|
| 305 |
+
self.batch_processor_task.cancel()
|
| 306 |
+
try:
|
| 307 |
+
await self.batch_processor_task
|
| 308 |
+
except asyncio.CancelledError:
|
| 309 |
+
pass
|
| 310 |
+
|
| 311 |
+
print("Batch processor stopped")
|
| 312 |
+
|
| 313 |
+
async def decode_single_async(
|
| 314 |
+
self,
|
| 315 |
+
snac_tokens: List[int],
|
| 316 |
+
trim_warmup: bool = True,
|
| 317 |
+
use_sliding_window: bool = False
|
| 318 |
+
) -> Optional[bytes]:
|
| 319 |
+
"""
|
| 320 |
+
Async decode for batching support.
|
| 321 |
+
|
| 322 |
+
Queues the request and waits for batched processing.
|
| 323 |
+
|
| 324 |
+
Args:
|
| 325 |
+
snac_tokens: List of SNAC token IDs
|
| 326 |
+
trim_warmup: Whether to trim SNAC warmup samples (default: True)
|
| 327 |
+
use_sliding_window: If True, only return middle 2048 samples (for sliding window streaming)
|
| 328 |
+
|
| 329 |
+
Returns:
|
| 330 |
+
Audio bytes or None if decode fails
|
| 331 |
+
"""
|
| 332 |
+
if not self.enable_batching:
|
| 333 |
+
# Fallback to synchronous decode
|
| 334 |
+
return self.decode_to_bytes(snac_tokens, trim_warmup=trim_warmup, use_sliding_window=use_sliding_window)
|
| 335 |
+
|
| 336 |
+
# Create future for result
|
| 337 |
+
result_future = asyncio.Future()
|
| 338 |
+
|
| 339 |
+
# Add to queue (include trim_warmup and sliding_window flags)
|
| 340 |
+
await self.request_queue.put((snac_tokens, trim_warmup, use_sliding_window, result_future))
|
| 341 |
+
|
| 342 |
+
# Wait for result
|
| 343 |
+
return await result_future
|
| 344 |
+
|
| 345 |
+
async def _batch_processor_loop(self):
|
| 346 |
+
"""Background task that processes batched decode requests."""
|
| 347 |
+
while self._running:
|
| 348 |
+
try:
|
| 349 |
+
# Collect batch
|
| 350 |
+
batch = await self._collect_batch()
|
| 351 |
+
|
| 352 |
+
if not batch:
|
| 353 |
+
continue
|
| 354 |
+
|
| 355 |
+
# Process batch
|
| 356 |
+
await self._process_batch(batch)
|
| 357 |
+
|
| 358 |
+
except asyncio.CancelledError:
|
| 359 |
+
break
|
| 360 |
+
except Exception as e:
|
| 361 |
+
print(f"Batch processor error: {e}")
|
| 362 |
+
import traceback
|
| 363 |
+
traceback.print_exc()
|
| 364 |
+
|
| 365 |
+
async def _collect_batch(self) -> List[Tuple[List[int], bool, bool, asyncio.Future]]:
|
| 366 |
+
"""
|
| 367 |
+
Collect requests into a batch.
|
| 368 |
+
Waits for timeout or until batch is full.
|
| 369 |
+
Returns:
|
| 370 |
+
List of (tokens, trim_warmup, use_sliding_window, future) tuples
|
| 371 |
+
"""
|
| 372 |
+
batch = []
|
| 373 |
+
timeout_sec = self.batch_timeout_ms / 1000.0
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
# Wait for first request (blocking)
|
| 377 |
+
first_item = await asyncio.wait_for(
|
| 378 |
+
self.request_queue.get(),
|
| 379 |
+
timeout=timeout_sec
|
| 380 |
+
)
|
| 381 |
+
batch.append(first_item)
|
| 382 |
+
|
| 383 |
+
# Collect more requests (non-blocking)
|
| 384 |
+
while len(batch) < self.max_batch_size:
|
| 385 |
+
try:
|
| 386 |
+
item = await asyncio.wait_for(
|
| 387 |
+
self.request_queue.get(),
|
| 388 |
+
timeout=timeout_sec
|
| 389 |
+
)
|
| 390 |
+
batch.append(item)
|
| 391 |
+
except asyncio.TimeoutError:
|
| 392 |
+
break # Timeout reached, process what we have
|
| 393 |
+
|
| 394 |
+
except asyncio.TimeoutError:
|
| 395 |
+
# No requests in timeout period
|
| 396 |
+
pass
|
| 397 |
+
|
| 398 |
+
return batch
|
| 399 |
+
|
| 400 |
+
@torch.inference_mode()
|
| 401 |
+
async def _process_batch(self, batch: List[Tuple[List[int], bool, bool, asyncio.Future]]):
|
| 402 |
+
"""
|
| 403 |
+
Process a batch of decode requests.
|
| 404 |
+
Args:
|
| 405 |
+
batch: List of (tokens, trim_warmup, use_sliding_window, future) tuples
|
| 406 |
+
"""
|
| 407 |
+
if not batch:
|
| 408 |
+
return
|
| 409 |
+
|
| 410 |
+
# Extract components
|
| 411 |
+
token_sequences = [item[0] for item in batch]
|
| 412 |
+
trim_warmup_flags = [item[1] for item in batch]
|
| 413 |
+
sliding_window_flags = [item[2] for item in batch]
|
| 414 |
+
futures = [item[3] for item in batch]
|
| 415 |
+
|
| 416 |
+
lengths = [len(tokens) for tokens in token_sequences]
|
| 417 |
+
can_batch_efficiently = len(set(lengths)) == 1
|
| 418 |
+
|
| 419 |
+
if can_batch_efficiently and len(batch) > 1:
|
| 420 |
+
# Efficient batching: all same length
|
| 421 |
+
try:
|
| 422 |
+
audio_bytes_list = await self._decode_batch_same_length(
|
| 423 |
+
token_sequences, trim_warmup_flags, sliding_window_flags
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Set results
|
| 427 |
+
for future, audio_bytes in zip(futures, audio_bytes_list):
|
| 428 |
+
if not future.done():
|
| 429 |
+
future.set_result(audio_bytes)
|
| 430 |
+
|
| 431 |
+
except Exception as e:
|
| 432 |
+
# Set exceptions
|
| 433 |
+
for future in futures:
|
| 434 |
+
if not future.done():
|
| 435 |
+
future.set_exception(e)
|
| 436 |
+
else:
|
| 437 |
+
# Sequential decode (different lengths or single item)
|
| 438 |
+
for tokens, trim_warmup, use_sliding_window, future in batch:
|
| 439 |
+
try:
|
| 440 |
+
audio_bytes = self.decode_to_bytes(
|
| 441 |
+
tokens, trim_warmup=trim_warmup, use_sliding_window=use_sliding_window
|
| 442 |
+
)
|
| 443 |
+
if not future.done():
|
| 444 |
+
future.set_result(audio_bytes)
|
| 445 |
+
except Exception as e:
|
| 446 |
+
if not future.done():
|
| 447 |
+
future.set_exception(e)
|
| 448 |
+
|
| 449 |
+
async def _decode_batch_same_length(
|
| 450 |
+
self,
|
| 451 |
+
token_sequences: List[List[int]],
|
| 452 |
+
trim_warmup_flags: List[bool],
|
| 453 |
+
sliding_window_flags: List[bool]
|
| 454 |
+
) -> List[Optional[bytes]]:
|
| 455 |
+
"""
|
| 456 |
+
Decode multiple sequences with same length in parallel.
|
| 457 |
+
|
| 458 |
+
Args:
|
| 459 |
+
token_sequences: List of token sequences (all same length)
|
| 460 |
+
trim_warmup_flags: List of trim_warmup flags for each sequence
|
| 461 |
+
sliding_window_flags: List of use_sliding_window flags for each sequence
|
| 462 |
+
|
| 463 |
+
Returns:
|
| 464 |
+
List of audio bytes
|
| 465 |
+
"""
|
| 466 |
+
if not token_sequences:
|
| 467 |
+
return []
|
| 468 |
+
|
| 469 |
+
# Unpack all sequences
|
| 470 |
+
unpacked_list = [self.unpack_snac_from_7(tokens) for tokens in token_sequences]
|
| 471 |
+
|
| 472 |
+
# Check all have valid frames
|
| 473 |
+
valid_indices = [i for i, levels in enumerate(unpacked_list) if levels[0]]
|
| 474 |
+
|
| 475 |
+
if not valid_indices:
|
| 476 |
+
return [None] * len(token_sequences)
|
| 477 |
+
|
| 478 |
+
# Stack into batched tensors
|
| 479 |
+
batch_size = len(valid_indices)
|
| 480 |
+
frames = len(unpacked_list[valid_indices[0]][0])
|
| 481 |
+
|
| 482 |
+
# Build batched codes [batch, frames], [batch, 2*frames], [batch, 4*frames]
|
| 483 |
+
codes = [
|
| 484 |
+
torch.stack([
|
| 485 |
+
torch.tensor(unpacked_list[i][level_idx], dtype=torch.long, device=self.device)
|
| 486 |
+
for i in valid_indices
|
| 487 |
+
], dim=0)
|
| 488 |
+
for level_idx in range(3)
|
| 489 |
+
]
|
| 490 |
+
|
| 491 |
+
# Batched decode
|
| 492 |
+
z_q = self.snac_model.quantizer.from_codes(codes)
|
| 493 |
+
audio_batch = self.snac_model.decoder(z_q) # [batch, 1, samples]
|
| 494 |
+
|
| 495 |
+
# Extract and convert to bytes
|
| 496 |
+
audio_bytes_list = [None] * len(token_sequences)
|
| 497 |
+
|
| 498 |
+
for batch_idx, orig_idx in enumerate(valid_indices):
|
| 499 |
+
audio = audio_batch[batch_idx, 0].detach().cpu().numpy()
|
| 500 |
+
|
| 501 |
+
# Apply sliding window or trim warmup based on flags
|
| 502 |
+
if sliding_window_flags[orig_idx]:
|
| 503 |
+
# Sliding window mode: keep middle 2048 samples only
|
| 504 |
+
if len(audio) >= 4096:
|
| 505 |
+
audio = audio[2048:4096]
|
| 506 |
+
else:
|
| 507 |
+
# Standard mode: trim warm-up if requested
|
| 508 |
+
if trim_warmup_flags[orig_idx] and len(audio) > 2048:
|
| 509 |
+
audio = audio[2048:]
|
| 510 |
+
|
| 511 |
+
# Convert to int16
|
| 512 |
+
audio_int16 = (audio * 32767).astype(np.int16)
|
| 513 |
+
audio_bytes_list[orig_idx] = audio_int16.tobytes()
|
| 514 |
+
|
| 515 |
+
return audio_bytes_list
|
maya1/streaming_pipeline.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Maya1 Streaming Pipeline - Sliding Window Approach
|
| 3 |
+
Implements sliding window technique for smooth streaming without artifacts.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import asyncio
|
| 7 |
+
from typing import AsyncGenerator, Optional
|
| 8 |
+
from vllm import SamplingParams
|
| 9 |
+
|
| 10 |
+
from .constants import (
|
| 11 |
+
CODE_END_TOKEN_ID,
|
| 12 |
+
SNAC_MIN_ID,
|
| 13 |
+
SNAC_MAX_ID,
|
| 14 |
+
DEFAULT_TEMPERATURE,
|
| 15 |
+
DEFAULT_TOP_P,
|
| 16 |
+
DEFAULT_MAX_TOKENS,
|
| 17 |
+
DEFAULT_MIN_TOKENS,
|
| 18 |
+
DEFAULT_REPETITION_PENALTY,
|
| 19 |
+
DEFAULT_SEED,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class Maya1SlidingWindowPipeline:
|
| 24 |
+
"""
|
| 25 |
+
Streaming TTS pipeline using sliding window approach.
|
| 26 |
+
Decodes overlapping 28-token windows (4 frames) and keeps only
|
| 27 |
+
the middle 2048 samples for smooth audio continuity.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# Sliding window configuration
|
| 31 |
+
WINDOW_SIZE = 28 # 4 frames (7 tokens per frame)
|
| 32 |
+
YIELD_STRIDE = 7 # Yield every 1 frame
|
| 33 |
+
MIDDLE_SAMPLES = 2048 # Keep middle 2048 samples from each decode
|
| 34 |
+
|
| 35 |
+
def __init__(self, model, prompt_builder, snac_decoder):
|
| 36 |
+
"""
|
| 37 |
+
Initialize sliding window streaming pipeline.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
model: Maya1Model instance
|
| 41 |
+
prompt_builder: Maya1PromptBuilder instance
|
| 42 |
+
snac_decoder: SNACDecoder instance
|
| 43 |
+
"""
|
| 44 |
+
self.model = model
|
| 45 |
+
self.prompt_builder = prompt_builder
|
| 46 |
+
self.snac_decoder = snac_decoder
|
| 47 |
+
print(f"Sliding window pipeline initialized")
|
| 48 |
+
|
| 49 |
+
async def generate_speech_stream(
|
| 50 |
+
self,
|
| 51 |
+
description: str,
|
| 52 |
+
text: str,
|
| 53 |
+
temperature: float = DEFAULT_TEMPERATURE,
|
| 54 |
+
top_p: float = DEFAULT_TOP_P,
|
| 55 |
+
max_tokens: int = DEFAULT_MAX_TOKENS,
|
| 56 |
+
repetition_penalty: float = DEFAULT_REPETITION_PENALTY,
|
| 57 |
+
seed: Optional[int] = None,
|
| 58 |
+
) -> AsyncGenerator[bytes, None]:
|
| 59 |
+
"""
|
| 60 |
+
Generate speech audio with sliding window streaming.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
description: Voice description
|
| 64 |
+
text: Text to synthesize (may include <emotion> tags)
|
| 65 |
+
temperature: Sampling temperature
|
| 66 |
+
top_p: Nucleus sampling
|
| 67 |
+
max_tokens: Max SNAC tokens to generate
|
| 68 |
+
repetition_penalty: Prevent loops
|
| 69 |
+
seed: Random seed
|
| 70 |
+
|
| 71 |
+
Yields:
|
| 72 |
+
Audio bytes (int16 PCM, 24kHz mono)
|
| 73 |
+
"""
|
| 74 |
+
# Build prompt
|
| 75 |
+
prompt = self.prompt_builder.build_prefix(description, text)
|
| 76 |
+
|
| 77 |
+
# Configure sampling
|
| 78 |
+
sampling_params = SamplingParams(
|
| 79 |
+
temperature=temperature,
|
| 80 |
+
top_p=top_p,
|
| 81 |
+
max_tokens=max_tokens,
|
| 82 |
+
min_tokens=DEFAULT_MIN_TOKENS,
|
| 83 |
+
repetition_penalty=repetition_penalty,
|
| 84 |
+
stop_token_ids=[CODE_END_TOKEN_ID],
|
| 85 |
+
seed=seed if seed is not None else DEFAULT_SEED,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Stream tokens
|
| 89 |
+
snac_buffer = []
|
| 90 |
+
last_yield_position = 0
|
| 91 |
+
chunk_count = 0
|
| 92 |
+
total_tokens_seen = 0
|
| 93 |
+
|
| 94 |
+
async for output in self.model.generate_stream(prompt, sampling_params):
|
| 95 |
+
# Get latest generated tokens (cumulative list)
|
| 96 |
+
generated_token_ids = output.outputs[0].token_ids
|
| 97 |
+
|
| 98 |
+
# Process only NEW tokens since last iteration
|
| 99 |
+
new_tokens = generated_token_ids[total_tokens_seen:]
|
| 100 |
+
total_tokens_seen = len(generated_token_ids)
|
| 101 |
+
|
| 102 |
+
# Collect SNAC codes from new tokens
|
| 103 |
+
for token_id in new_tokens:
|
| 104 |
+
# Stop if we hit EOS
|
| 105 |
+
if token_id == CODE_END_TOKEN_ID:
|
| 106 |
+
break
|
| 107 |
+
|
| 108 |
+
# Only collect valid SNAC tokens
|
| 109 |
+
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID:
|
| 110 |
+
snac_buffer.append(token_id)
|
| 111 |
+
|
| 112 |
+
# Yield audio when we have enough tokens for a window
|
| 113 |
+
while len(snac_buffer) >= last_yield_position + self.WINDOW_SIZE:
|
| 114 |
+
# Get window of 28 tokens
|
| 115 |
+
window_start = last_yield_position
|
| 116 |
+
window_end = window_start + self.WINDOW_SIZE
|
| 117 |
+
window = snac_buffer[window_start:window_end]
|
| 118 |
+
|
| 119 |
+
if len(window) == self.WINDOW_SIZE:
|
| 120 |
+
# Decode window to audio
|
| 121 |
+
audio_bytes = await self.snac_decoder.decode_single_async(window)
|
| 122 |
+
|
| 123 |
+
if audio_bytes:
|
| 124 |
+
# Extract middle portion of audio
|
| 125 |
+
audio_samples = len(audio_bytes) // 2
|
| 126 |
+
middle_start_sample = (audio_samples - self.MIDDLE_SAMPLES) // 2
|
| 127 |
+
middle_end_sample = middle_start_sample + self.MIDDLE_SAMPLES
|
| 128 |
+
|
| 129 |
+
# Convert to byte positions
|
| 130 |
+
middle_start_byte = middle_start_sample * 2
|
| 131 |
+
middle_end_byte = middle_end_sample * 2
|
| 132 |
+
|
| 133 |
+
# Extract middle chunk
|
| 134 |
+
audio_chunk = audio_bytes[middle_start_byte:middle_end_byte]
|
| 135 |
+
|
| 136 |
+
chunk_count += 1
|
| 137 |
+
if chunk_count == 1:
|
| 138 |
+
print(f" First chunk ready")
|
| 139 |
+
|
| 140 |
+
yield audio_chunk
|
| 141 |
+
|
| 142 |
+
# Move forward by stride
|
| 143 |
+
last_yield_position += self.YIELD_STRIDE
|
| 144 |
+
|
| 145 |
+
# Check if generation is done
|
| 146 |
+
if CODE_END_TOKEN_ID in new_tokens:
|
| 147 |
+
break
|
| 148 |
+
|
| 149 |
+
# Final chunk: decode remaining tokens
|
| 150 |
+
remaining_tokens = len(snac_buffer) - last_yield_position
|
| 151 |
+
if remaining_tokens >= self.WINDOW_SIZE:
|
| 152 |
+
window = snac_buffer[-self.WINDOW_SIZE:]
|
| 153 |
+
audio_bytes = await self.snac_decoder.decode_single_async(window)
|
| 154 |
+
if audio_bytes:
|
| 155 |
+
yield audio_bytes[-self.MIDDLE_SAMPLES * 2:]
|
| 156 |
+
|
| 157 |
+
frames = len(snac_buffer) // 7
|
| 158 |
+
duration = frames / 6.86
|
| 159 |
+
print(f"Streamed {chunk_count} chunks (~{duration:.1f}s audio)")
|