Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
def main(image, backbone, style):
|
|
|
|
|
|
|
| 4 |
isize = image.size
|
|
|
|
| 5 |
s = f"The output image ({str(image.size)}) is processed by {backbone} based on input image ({str(isize)}) . <br> Please <b>rate</b> the generated image through the <b>Flag</b> button below!"
|
| 6 |
return image, s
|
| 7 |
|
|
@@ -20,6 +158,7 @@ gr.Interface(
|
|
| 20 |
# []
|
| 21 |
# ],
|
| 22 |
# live = True, # the interface will recalculate as soon as the user input changes.
|
|
|
|
| 23 |
flagging_options = ["Excellect", "Moderate", "Bad"],
|
| 24 |
flagging_dir = "flagged",
|
| 25 |
allow_screenshot = False,
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
Rain_Princess = hf_hub_download(repo_id="maze/FastStyleTransfer", filename="Rain_Princess.pth")
|
| 5 |
+
#modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit")
|
| 6 |
+
#modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
import gradio as gr
|
| 12 |
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
|
| 16 |
+
import torchvision.transforms as transforms
|
| 17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class TransformerNetwork(nn.Module):
|
| 21 |
+
def __init__(self, tanh_multiplier=None):
|
| 22 |
+
super(TransformerNetwork, self).__init__()
|
| 23 |
+
self.ConvBlock = nn.Sequential(
|
| 24 |
+
ConvLayer(3, 32, 9, 1),
|
| 25 |
+
nn.ReLU(),
|
| 26 |
+
ConvLayer(32, 64, 3, 2),
|
| 27 |
+
nn.ReLU(),
|
| 28 |
+
ConvLayer(64, 128, 3, 2),
|
| 29 |
+
nn.ReLU()
|
| 30 |
+
)
|
| 31 |
+
self.ResidualBlock = nn.Sequential(
|
| 32 |
+
ResidualLayer(128, 3),
|
| 33 |
+
ResidualLayer(128, 3),
|
| 34 |
+
ResidualLayer(128, 3),
|
| 35 |
+
ResidualLayer(128, 3),
|
| 36 |
+
ResidualLayer(128, 3)
|
| 37 |
+
)
|
| 38 |
+
self.DeconvBlock = nn.Sequential(
|
| 39 |
+
DeconvLayer(128, 64, 3, 2, 1),
|
| 40 |
+
nn.ReLU(),
|
| 41 |
+
DeconvLayer(64, 32, 3, 2, 1),
|
| 42 |
+
nn.ReLU(),
|
| 43 |
+
ConvLayer(32, 3, 9, 1, norm="None")
|
| 44 |
+
)
|
| 45 |
+
self.tanh_multiplier = tanh_multiplier
|
| 46 |
+
|
| 47 |
+
def forward(self, x):
|
| 48 |
+
x = self.ConvBlock(x)
|
| 49 |
+
x = self.ResidualBlock(x)
|
| 50 |
+
x = self.DeconvBlock(x)
|
| 51 |
+
if isinstance(self.tanh_multiplier, int):
|
| 52 |
+
x = self.tanh_multiplier * F.tanh(x)
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
class ConvLayer(nn.Module):
|
| 56 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
|
| 57 |
+
super(ConvLayer, self).__init__()
|
| 58 |
+
padding_size = kernel_size // 2
|
| 59 |
+
self.pad = nn.ReflectionPad2d(padding_size)
|
| 60 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
| 61 |
+
if norm == "instance":
|
| 62 |
+
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
|
| 63 |
+
elif norm == "batch":
|
| 64 |
+
self.norm = nn.BatchNorm2d(out_channels, affine=True)
|
| 65 |
+
else:
|
| 66 |
+
self.norm = nn.Identity()
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
x = self.pad(x)
|
| 70 |
+
x = self.conv(x)
|
| 71 |
+
x = self.norm(x)
|
| 72 |
+
return x
|
| 73 |
+
|
| 74 |
+
class ResidualLayer(nn.Module):
|
| 75 |
+
def __init__(self, channels=128, kernel_size=3):
|
| 76 |
+
super(ResidualLayer, self).__init__()
|
| 77 |
+
self.conv1 = ConvLayer(channels, channels, kernel_size, stride=1)
|
| 78 |
+
self.relu = nn.ReLU()
|
| 79 |
+
self.conv2 = ConvLayer(channels, channels, kernel_size, stride=1)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
identity = x
|
| 83 |
+
out = self.relu(self.conv1(x))
|
| 84 |
+
out = self.conv2(out)
|
| 85 |
+
out = out + identity
|
| 86 |
+
return out
|
| 87 |
+
|
| 88 |
+
class DeconvLayer(nn.Module):
|
| 89 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"):
|
| 90 |
+
super(DeconvLayer, self).__init__()
|
| 91 |
+
|
| 92 |
+
padding_size = kernel_size // 2
|
| 93 |
+
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding)
|
| 94 |
+
if norm == "instance":
|
| 95 |
+
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
|
| 96 |
+
elif norm == "batch":
|
| 97 |
+
self.norm = nn.BatchNorm2d(out_channels, affine=True)
|
| 98 |
+
else:
|
| 99 |
+
self.norm = nn.Identity()
|
| 100 |
+
|
| 101 |
+
def forward(self, x):
|
| 102 |
+
x = self.conv_transpose(x)
|
| 103 |
+
out = self.norm(x)
|
| 104 |
+
return out
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
mean = np.array([0.485, 0.456, 0.406])
|
| 108 |
+
std = np.array([0.229, 0.224, 0.225])
|
| 109 |
+
|
| 110 |
+
transformer = TransformerNetwork().to(device)
|
| 111 |
+
|
| 112 |
+
transformer.eval()
|
| 113 |
+
|
| 114 |
+
transform = transforms.Compose([
|
| 115 |
+
transforms.Resize(256),
|
| 116 |
+
transforms.ToTensor(),
|
| 117 |
+
transforms.Normalize(mean, std),
|
| 118 |
+
])
|
| 119 |
+
|
| 120 |
+
denormalize = transforms.Normalize(
|
| 121 |
+
mean= [-m/s for m, s in zip(mean, std)],
|
| 122 |
+
std= [1/s for s in std]
|
| 123 |
+
)
|
| 124 |
+
tensor2Image = transforms.ToPILImage()
|
| 125 |
+
|
| 126 |
+
@torch.no_grad()
|
| 127 |
+
def process(image, model):
|
| 128 |
+
image = transform(image).to(device)
|
| 129 |
+
image = image.unsqueeze(dim=0)
|
| 130 |
+
|
| 131 |
+
image = denormalize(model(image)).cpu()
|
| 132 |
+
image = torch.clamp(image.squeeze(dim=0), 0, 1)
|
| 133 |
+
image = tensor2Image(image)
|
| 134 |
+
|
| 135 |
+
return image
|
| 136 |
+
|
| 137 |
+
|
| 138 |
def main(image, backbone, style):
|
| 139 |
+
transformer.load_state_dict(torch.load(Rain_Princess))
|
| 140 |
+
image = Image.fromarray(image)
|
| 141 |
isize = image.size
|
| 142 |
+
image = process(image, transformer)
|
| 143 |
s = f"The output image ({str(image.size)}) is processed by {backbone} based on input image ({str(isize)}) . <br> Please <b>rate</b> the generated image through the <b>Flag</b> button below!"
|
| 144 |
return image, s
|
| 145 |
|
|
|
|
| 158 |
# []
|
| 159 |
# ],
|
| 160 |
# live = True, # the interface will recalculate as soon as the user input changes.
|
| 161 |
+
allow_flagging = "manual",
|
| 162 |
flagging_options = ["Excellect", "Moderate", "Bad"],
|
| 163 |
flagging_dir = "flagged",
|
| 164 |
allow_screenshot = False,
|