Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,27 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
st.markdown("###
|
| 4 |
-
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
return text[::-1]
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
st.
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import transformers
|
| 4 |
|
| 5 |
+
st.markdown("### Articles classificator.")
|
| 6 |
+
# st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 7 |
|
| 8 |
+
@st.cache_data
|
| 9 |
+
def LoadModel():
|
| 10 |
+
return torch.load('model.pt'), AutoTokenizer.from_pretrained('bert-base-uncased')()
|
| 11 |
|
| 12 |
+
model, tokenizer = LoadModel()
|
|
|
|
| 13 |
|
| 14 |
+
def process(title, summary):
|
| 15 |
+
text = title + summary
|
| 16 |
+
model.eval()
|
| 17 |
+
lines = [text]
|
| 18 |
+
X = tokenizer(lines, padding=True, truncation=True, return_tensors="pt")
|
| 19 |
+
out = model(X)
|
| 20 |
+
probs = torch.exp(out[0])
|
| 21 |
+
return probs
|
| 22 |
+
|
| 23 |
+
title = st.text_area("Title")
|
| 24 |
|
| 25 |
+
summary = st.text_area("Summary")
|
| 26 |
+
|
| 27 |
+
st.markdown(f"{process(title, summary)}")
|