Spaces:
Sleeping
Sleeping
| import os | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" | |
| from flask import Flask, request, jsonify | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| import torch | |
| app = Flask(__name__) | |
| # ✅ Modeli ve tokenizer'ı direkt Hugging Face'ten yüklüyoruz | |
| model_name = "memorease/memorease-flan-t5" | |
| print("[Startup] Loading model...") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| print("[Startup] Model loaded.") | |
| def ask_question(): | |
| try: | |
| input_text = request.json.get("text") | |
| if not input_text: | |
| return jsonify({"error": "Missing 'text'"}), 400 | |
| # Prompt oluştur | |
| prompt = f"Only generate a factual and relevant question about this memory: {input_text}" | |
| inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
| # Inference | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs, max_new_tokens=64) | |
| question = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return jsonify({"question": question}) | |
| except Exception as e: | |
| return jsonify({"error": str(e)}), 500 | |
| def healthcheck(): | |
| return jsonify({"status": "running"}) | |
| if __name__ == "__main__": | |
| app.run(host="0.0.0.0", port=7860) | |