Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def FeedForward(dim, mult=4): | |
| inner_dim = int(dim * mult) | |
| return nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, inner_dim, bias=False), | |
| nn.GELU(), | |
| nn.Linear(inner_dim, dim, bias=False), | |
| ) | |
| class PerceiverAttention(nn.Module): | |
| def __init__( | |
| self, *, dim, dim_head=64, heads=8, dropout_p=0.05, concat_kv_latents=True | |
| ): | |
| super().__init__() | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm_x = nn.LayerNorm(dim) | |
| self.norm_latents = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| self.dropout_p = dropout_p | |
| self.concat_kv_latents = concat_kv_latents | |
| def _separate_heads(self, x: torch.Tensor, num_heads: int) -> torch.Tensor: | |
| b, n, c = x.shape | |
| x = x.reshape(b, n, num_heads, c // num_heads) | |
| return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head | |
| def _recombine_heads(self, x: torch.Tensor) -> torch.Tensor: | |
| b, n_heads, n_tokens, c_per_head = x.shape | |
| x = x.transpose(1, 2) | |
| return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C | |
| def forward(self, latents, x, pos=None): | |
| latents = self.norm_latents(latents) | |
| x = self.norm_x(x) | |
| q = self.to_q(latents) | |
| # the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to | |
| if self.concat_kv_latents: | |
| kv_input = torch.cat((x, latents), dim=-2) | |
| else: | |
| kv_input = x | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| q = self._separate_heads(q, self.heads) | |
| k = self._separate_heads(k, self.heads) | |
| v = self._separate_heads(v, self.heads) | |
| if pos is not None: | |
| assert not self.concat_kv_latents | |
| pos = self._separate_heads(pos, self.heads) | |
| k, v = k + pos, v + pos | |
| out = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=None, | |
| dropout_p=self.dropout_p if self.training else 0.0, | |
| ) | |
| out = self._recombine_heads(out) | |
| return self.to_out(out) | |
| class Attention(nn.Module): | |
| def __init__(self, *, dim, dim_head=64, heads=8, dropout_p=0.05): | |
| super().__init__() | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| self.dropout_p = dropout_p | |
| def _separate_heads(self, x: torch.Tensor, num_heads: int) -> torch.Tensor: | |
| b, n, c = x.shape | |
| x = x.reshape(b, n, num_heads, c // num_heads) | |
| return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head | |
| def _recombine_heads(self, x: torch.Tensor) -> torch.Tensor: | |
| b, n_heads, n_tokens, c_per_head = x.shape | |
| x = x.transpose(1, 2) | |
| return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C | |
| def forward(self, x): | |
| x = self.norm(x) | |
| q = self.to_q(x) | |
| k, v = self.to_kv(x).chunk(2, dim=-1) | |
| q = self._separate_heads(q, self.heads) | |
| k = self._separate_heads(k, self.heads) | |
| v = self._separate_heads(v, self.heads) | |
| out = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=None, | |
| dropout_p=self.dropout_p if self.training else 0.0, | |
| ) | |
| out = self._recombine_heads(out) | |
| return self.to_out(out) | |
| class PerceiverEncoderLayer(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_head=64, | |
| heads=8, | |
| ff_mult=4, | |
| hidden_dropout_p=0.0, | |
| attention_dropout_p=0.0, | |
| concat_kv_latents=False, | |
| use_self_attn=False, | |
| ): | |
| super().__init__() | |
| self.attn = PerceiverAttention( | |
| dim=dim, | |
| dim_head=dim_head, | |
| heads=heads, | |
| dropout_p=attention_dropout_p, | |
| concat_kv_latents=concat_kv_latents, | |
| ) | |
| self.ff = FeedForward(dim=dim, mult=ff_mult) | |
| self.dropout = nn.Dropout(hidden_dropout_p) | |
| self.use_self_attn = use_self_attn | |
| if use_self_attn: | |
| self.self_attn = Attention( | |
| dim=dim, | |
| dim_head=dim_head, | |
| heads=heads, | |
| dropout_p=attention_dropout_p, | |
| ) | |
| self.self_ff = FeedForward(dim=dim, mult=ff_mult) | |
| def forward(self, latents, x, pos=None): | |
| latents = self.attn(latents, x, pos) + latents | |
| latents = self.dropout(latents) | |
| latents = self.ff(latents) + latents | |
| if self.use_self_attn: | |
| latents = self.self_attn(latents) + latents | |
| latents = self.self_ff(latents) + latents | |
| return latents | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (B, H, W, C) | |
| window_size (int): window size | |
| Returns: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| """ | |
| B, H, W, C = x.shape | |
| x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
| windows = ( | |
| x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
| ) | |
| return windows | |
| def window_reverse(windows, window_size, H, W): | |
| """ | |
| Args: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| window_size (int): Window size | |
| H (int): Height of image | |
| W (int): Width of image | |
| Returns: | |
| x: (B, H, W, C) | |
| """ | |
| B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
| x = windows.view( | |
| B, H // window_size, W // window_size, window_size, window_size, -1 | |
| ) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
| return x | |
| class PerceiverResampler(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| depth, | |
| dim_head=64, | |
| heads=1, | |
| num_latents=-1, | |
| num_latents_2d=-1, | |
| ff_mult=4, | |
| hidden_dropout_p=0.1, | |
| attention_dropout_p=0.05, | |
| pos_enc_at_key_value=False, | |
| concat_kv_latents=False, | |
| position_encoding=None, | |
| use_self_attn=False, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.num_latents = num_latents | |
| self.num_latents_2d = num_latents_2d | |
| if num_latents > 0: | |
| self.latents = nn.Parameter(torch.randn(num_latents, dim)) | |
| if num_latents_2d > 0: | |
| self.latents_2d = nn.Parameter(torch.randn(num_latents_2d, dim)) | |
| self.position_encoding = position_encoding | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| PerceiverEncoderLayer( | |
| dim=dim, | |
| dim_head=dim_head, | |
| heads=heads, | |
| ff_mult=ff_mult, | |
| hidden_dropout_p=hidden_dropout_p, | |
| attention_dropout_p=attention_dropout_p, | |
| concat_kv_latents=concat_kv_latents, | |
| use_self_attn=use_self_attn, | |
| ), | |
| ) | |
| self.norm = nn.LayerNorm(dim) | |
| self.pos_enc_at_key_value = pos_enc_at_key_value | |
| def forward(self, x, pos=None): | |
| out_latents = [] | |
| out_pos = [] | |
| if self.num_latents > 0: | |
| latents_1d, pos_1d = self.forward_1d(x, pos) | |
| out_latents.append(latents_1d) | |
| out_pos.append(pos_1d) | |
| if self.num_latents_2d > 0: | |
| latents_2d, pos_2d = self.forward_2d(x) | |
| out_latents.append(latents_2d) | |
| out_pos.append(pos_2d) | |
| latents = torch.concat(out_latents, dim=1) | |
| if pos is not None: | |
| pos = torch.concat(out_pos, dim=1) | |
| return latents, pos | |
| def forward_1d(self, x, pos): | |
| latents = self.latents.unsqueeze(0).expand(x.shape[0], -1, -1) | |
| x = x.permute(0, 2, 3, 1).flatten(1, 2) | |
| if not self.pos_enc_at_key_value: | |
| _pos = None | |
| if pos is not None: | |
| _pos = pos.permute(0, 2, 3, 1).flatten(1, 2) | |
| else: | |
| _pos = None | |
| for layer in self.layers: | |
| latents = layer(latents, x, _pos) | |
| if pos is not None: | |
| pos = torch.zeros_like(latents) | |
| latents = self.norm(latents) | |
| return latents, pos | |
| def forward_2d(self, x): | |
| B, C, H, W = x.shape | |
| latents_2d = self.latents_2d.unsqueeze(0).expand(B, -1, -1).view(-1, 1, C) | |
| num_window = int(math.sqrt(self.num_latents_2d)) | |
| window_size = H // num_window | |
| x = x.permute(0, 2, 3, 1) | |
| x = window_partition(x, window_size) | |
| x = x.flatten(1, 2) | |
| for layer in self.layers: | |
| latents_2d = layer(latents_2d, x) | |
| latents_2d = latents_2d.view(B, num_window, num_window, C).permute(0, 3, 1, 2) | |
| pos_2d = self.position_encoding(latents_2d) | |
| pos_2d = pos_2d.permute(0, 2, 3, 1).flatten(1, 2) | |
| latents_2d = latents_2d.permute(0, 2, 3, 1).flatten(1, 2) | |
| latents_2d = self.norm(latents_2d) | |
| return latents_2d, pos_2d | |