Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import jax | |
| from PIL import Image | |
| from flax.jax_utils import replicate | |
| from flax.training.common_utils import shard | |
| from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline | |
| from diffusers.utils import load_image | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import gc | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| "mfidabel/controlnet-segment-anything", dtype=jnp.float32 | |
| ) | |
| pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 | |
| ) | |
| # Add ControlNet params and Replicate | |
| params["controlnet"] = controlnet_params | |
| p_params = replicate(params) | |
| # Description | |
| title = "# 🧨 ControlNet on Segment Anything 🤗" | |
| description = """This is a demo on 🧨 ControlNet based on Meta's [Segment Anything Model](https://segment-anything.com/). | |
| Upload a Segment Anything Segmentation Map, write a prompt, and generate images 🤗 This demo is still Work in Progress, so don't expect it to work well for now !! | |
| Test some of the examples below to give it a try ⬇️ | |
| """ | |
| examples = [["contemporary living room of a house", "low quality", "examples/condition_image_1.png"], | |
| ["new york buildings, Vincent Van Gogh starry night ", "low quality, monochrome", "examples/condition_image_2.png"], | |
| ["contemporary living room, high quality, 4k, realistic", "low quality, monochrome, low res", "examples/condition_image_3.png"]] | |
| # Inference Function | |
| def infer(prompts, negative_prompts, image, num_inference_steps = 50, seed = 4, num_samples = 4): | |
| try: | |
| rng = jax.random.PRNGKey(int(seed)) | |
| num_inference_steps = int(num_inference_steps) | |
| image = Image.fromarray(image, mode="RGB") | |
| num_samples = max(jax.device_count(), int(num_samples)) | |
| p_rng = jax.random.split(rng, jax.device_count()) | |
| prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
| processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
| prompt_ids = shard(prompt_ids) | |
| negative_prompt_ids = shard(negative_prompt_ids) | |
| processed_image = shard(processed_image) | |
| output = pipe( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=p_params, | |
| prng_seed=p_rng, | |
| num_inference_steps=num_inference_steps, | |
| neg_prompt_ids=negative_prompt_ids, | |
| jit=True, | |
| ).images | |
| del negative_prompt_ids | |
| del processed_image | |
| del prompt_ids | |
| output = output.reshape((num_samples,) + output.shape[-3:]) | |
| final_image = [np.array(x*255, dtype=np.uint8) for x in output] | |
| print(output.shape) | |
| del output | |
| except Exception as e: | |
| print("Error: " + str(e)) | |
| final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
| finally: | |
| gc.collect() | |
| return final_image | |
| default_example = examples[2] | |
| cond_img = gr.Image(label="Input", shape=(512, 512), value=default_example[2])\ | |
| .style(height=200) | |
| output = gr.Gallery(label="Generated images")\ | |
| .style(height=200, rows=[2], columns=[1, 2], object_fit="contain") | |
| prompt = gr.Textbox(lines=1, label="Prompt", value=default_example[0]) | |
| negative_prompt = gr.Textbox(lines=1, label="Negative Prompt", value=default_example[1]) | |
| with gr.Blocks(css="h1 { text-align: center }") as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Title | |
| gr.Markdown(title) | |
| # Description | |
| gr.Markdown(description) | |
| with gr.Column(): | |
| # Examples | |
| gr.Examples(examples=examples, | |
| inputs=[prompt, negative_prompt, cond_img], | |
| outputs=output, | |
| fn=infer) | |
| # Images | |
| with gr.Row(variant="panel"): | |
| with gr.Column(scale=2): | |
| cond_img.render() | |
| with gr.Column(scale=1): | |
| output.render() | |
| # Submit & Clear | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt.render() | |
| negative_prompt.render() | |
| with gr.Column(): | |
| with gr.Accordion("Advanced options", open=False): | |
| num_steps = gr.Slider(10, 60, 50, step=1, label="Steps") | |
| seed = gr.Slider(0, 1024, 4, step=1, label="Seed") | |
| num_samples = gr.Slider(1, 4, 4, step=1, label="Nº Samples") | |
| submit = gr.Button("Generate") | |
| # TODO: Download Button | |
| submit.click(infer, | |
| inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples], | |
| outputs = output) | |
| demo.queue() | |
| demo.launch() |