Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,12 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import speech_recognition as sr
|
| 5 |
-
from pydub import AudioSegment
|
| 6 |
|
| 7 |
# Load the Netflix dataset from CSV
|
| 8 |
@st.cache_data
|
| 9 |
def load_data():
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
# Load DialoGPT model and tokenizer
|
| 13 |
@st.cache_resource
|
|
@@ -16,23 +16,23 @@ def load_model():
|
|
| 16 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 17 |
return tokenizer, model
|
| 18 |
|
| 19 |
-
# Function to search
|
| 20 |
def search_movie_details(query, data):
|
| 21 |
query = query.lower()
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
return results
|
| 28 |
|
| 29 |
# Function to convert voice to text
|
| 30 |
def voice_to_text():
|
| 31 |
recognizer = sr.Recognizer()
|
| 32 |
with sr.Microphone() as source:
|
| 33 |
-
st.write("Speak now...")
|
| 34 |
-
audio = recognizer.listen(source)
|
| 35 |
try:
|
|
|
|
| 36 |
text = recognizer.recognize_google(audio)
|
| 37 |
return text
|
| 38 |
except sr.UnknownValueError:
|
|
@@ -41,7 +41,7 @@ def voice_to_text():
|
|
| 41 |
return "Sorry, the speech service is down."
|
| 42 |
|
| 43 |
# Streamlit App
|
| 44 |
-
st.title("Netflix Movie
|
| 45 |
|
| 46 |
# Load dataset and model
|
| 47 |
data = load_data()
|
|
@@ -54,9 +54,9 @@ user_input = ""
|
|
| 54 |
if input_option == "Text":
|
| 55 |
user_input = st.text_input("Enter the movie name, director, or cast:")
|
| 56 |
elif input_option == "Voice":
|
| 57 |
-
if st.button("Start Recording"):
|
| 58 |
user_input = voice_to_text()
|
| 59 |
-
st.write(f"You said: {user_input}")
|
| 60 |
|
| 61 |
# Generate response
|
| 62 |
if user_input:
|
|
@@ -64,19 +64,19 @@ if user_input:
|
|
| 64 |
movie_results = search_movie_details(user_input, data)
|
| 65 |
|
| 66 |
if not movie_results.empty:
|
| 67 |
-
st.write("Here are the matching results
|
| 68 |
for _, row in movie_results.iterrows():
|
| 69 |
-
st.write(f"
|
| 70 |
-
st.write(f"
|
| 71 |
-
st.write(f"
|
| 72 |
-
st.write(f"
|
| 73 |
-
st.write(f"
|
| 74 |
-
st.write(f"
|
| 75 |
-
st.write(f"
|
| 76 |
st.write("---")
|
| 77 |
else:
|
| 78 |
# Use DialoGPT for general conversation
|
| 79 |
inputs = tokenizer.encode(user_input, return_tensors="pt")
|
| 80 |
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
| 81 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
-
st.write(f"Chatbot
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import speech_recognition as sr
|
|
|
|
| 5 |
|
| 6 |
# Load the Netflix dataset from CSV
|
| 7 |
@st.cache_data
|
| 8 |
def load_data():
|
| 9 |
+
url = "https://huggingface.co/spaces/mfraz/Netflix-data/resolve/main/netflix_titles.csv"
|
| 10 |
+
return pd.read_csv(url)
|
| 11 |
|
| 12 |
# Load DialoGPT model and tokenizer
|
| 13 |
@st.cache_resource
|
|
|
|
| 16 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 17 |
return tokenizer, model
|
| 18 |
|
| 19 |
+
# Function to search movie details
|
| 20 |
def search_movie_details(query, data):
|
| 21 |
query = query.lower()
|
| 22 |
+
search_columns = ["title", "cast", "director"]
|
| 23 |
+
|
| 24 |
+
results = data.dropna(subset=search_columns) # Remove NaN values for safe searching
|
| 25 |
+
results = results[results[search_columns].apply(lambda x: x.astype(str).str.lower().str.contains(query).any(), axis=1)]
|
| 26 |
+
|
| 27 |
return results
|
| 28 |
|
| 29 |
# Function to convert voice to text
|
| 30 |
def voice_to_text():
|
| 31 |
recognizer = sr.Recognizer()
|
| 32 |
with sr.Microphone() as source:
|
| 33 |
+
st.write("π Speak now...")
|
|
|
|
| 34 |
try:
|
| 35 |
+
audio = recognizer.listen(source, timeout=5)
|
| 36 |
text = recognizer.recognize_google(audio)
|
| 37 |
return text
|
| 38 |
except sr.UnknownValueError:
|
|
|
|
| 41 |
return "Sorry, the speech service is down."
|
| 42 |
|
| 43 |
# Streamlit App
|
| 44 |
+
st.title("π¬ Netflix Movie Search Chatbot")
|
| 45 |
|
| 46 |
# Load dataset and model
|
| 47 |
data = load_data()
|
|
|
|
| 54 |
if input_option == "Text":
|
| 55 |
user_input = st.text_input("Enter the movie name, director, or cast:")
|
| 56 |
elif input_option == "Voice":
|
| 57 |
+
if st.button("π€ Start Recording"):
|
| 58 |
user_input = voice_to_text()
|
| 59 |
+
st.write(f"π£ You said: **{user_input}**")
|
| 60 |
|
| 61 |
# Generate response
|
| 62 |
if user_input:
|
|
|
|
| 64 |
movie_results = search_movie_details(user_input, data)
|
| 65 |
|
| 66 |
if not movie_results.empty:
|
| 67 |
+
st.write("π₯ **Here are the matching results:**")
|
| 68 |
for _, row in movie_results.iterrows():
|
| 69 |
+
st.write(f"**π Title:** {row.get('title', 'N/A')}")
|
| 70 |
+
st.write(f"**π Type:** {row.get('type', 'N/A')}")
|
| 71 |
+
st.write(f"**π¬ Director:** {row.get('director', 'N/A')}")
|
| 72 |
+
st.write(f"**π₯ Cast:** {row.get('cast', 'N/A')}")
|
| 73 |
+
st.write(f"**π
Release Year:** {row.get('release_year', 'N/A')}")
|
| 74 |
+
st.write(f"**β Rating:** {row.get('rating', 'N/A')}")
|
| 75 |
+
st.write(f"**π Description:** {row.get('description', 'N/A')}")
|
| 76 |
st.write("---")
|
| 77 |
else:
|
| 78 |
# Use DialoGPT for general conversation
|
| 79 |
inputs = tokenizer.encode(user_input, return_tensors="pt")
|
| 80 |
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
| 81 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
+
st.write(f"π€ **Chatbot:** {response}")
|