Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,8 @@ from groq import Groq
|
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
from docx import Document
|
| 6 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Initialize Groq API Client
|
| 9 |
client = Groq(api_key=os.environ.get("Groq_Api"))
|
|
@@ -16,8 +18,8 @@ uploaded_file = st.file_uploader("Upload a PDF or DOCX file", type=["pdf", "docx
|
|
| 16 |
|
| 17 |
if uploaded_file:
|
| 18 |
st.write(f"**File Name:** {uploaded_file.name}") # Display file name
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
def extract_text(file):
|
| 22 |
if file.name.endswith(".pdf"):
|
| 23 |
reader = PdfReader(file)
|
|
@@ -35,15 +37,29 @@ if uploaded_file:
|
|
| 35 |
query = st.text_input("Enter your question")
|
| 36 |
|
| 37 |
if query:
|
| 38 |
-
#
|
| 39 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 40 |
-
chunks = [file_text[i:i + 512] for i in range(0, len(file_text), 512)]
|
| 41 |
-
embeddings = model.encode(chunks)
|
| 42 |
|
| 43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
chat_completion = client.chat.completions.create(
|
| 45 |
messages=[
|
| 46 |
-
{"role": "user", "content": f"Answer based on this document: {query}\n\n{
|
| 47 |
],
|
| 48 |
model="llama-3.3-70b-versatile",
|
| 49 |
)
|
|
@@ -52,6 +68,6 @@ if uploaded_file:
|
|
| 52 |
answer = chat_completion.choices[0].message.content
|
| 53 |
st.subheader("Answer:")
|
| 54 |
st.write(answer)
|
|
|
|
| 55 |
else:
|
| 56 |
st.error("Failed to extract text from the file. Please check the format.")
|
| 57 |
-
|
|
|
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
from docx import Document
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
+
import faiss
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
# Initialize Groq API Client
|
| 11 |
client = Groq(api_key=os.environ.get("Groq_Api"))
|
|
|
|
| 18 |
|
| 19 |
if uploaded_file:
|
| 20 |
st.write(f"**File Name:** {uploaded_file.name}") # Display file name
|
| 21 |
+
|
| 22 |
+
# Extract Text
|
| 23 |
def extract_text(file):
|
| 24 |
if file.name.endswith(".pdf"):
|
| 25 |
reader = PdfReader(file)
|
|
|
|
| 37 |
query = st.text_input("Enter your question")
|
| 38 |
|
| 39 |
if query:
|
| 40 |
+
# Load Sentence Transformer Model
|
| 41 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Chunk & Embed Text
|
| 44 |
+
chunk_size = 512
|
| 45 |
+
chunks = [file_text[i:i + chunk_size] for i in range(0, len(file_text), chunk_size)]
|
| 46 |
+
embeddings = model.encode(chunks, convert_to_numpy=True)
|
| 47 |
+
|
| 48 |
+
# Build FAISS Index for Fast Retrieval
|
| 49 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 50 |
+
index.add(embeddings)
|
| 51 |
+
|
| 52 |
+
# Query Embedding
|
| 53 |
+
query_embedding = model.encode([query], convert_to_numpy=True)
|
| 54 |
+
_, retrieved_idx = index.search(query_embedding, k=3)
|
| 55 |
+
|
| 56 |
+
# Retrieve Top 3 Relevant Chunks
|
| 57 |
+
relevant_text = " ".join([chunks[i] for i in retrieved_idx[0]])
|
| 58 |
+
|
| 59 |
+
# Query Groq API with relevant chunks only
|
| 60 |
chat_completion = client.chat.completions.create(
|
| 61 |
messages=[
|
| 62 |
+
{"role": "user", "content": f"Answer based on this document: {query}\n\n{relevant_text}"},
|
| 63 |
],
|
| 64 |
model="llama-3.3-70b-versatile",
|
| 65 |
)
|
|
|
|
| 68 |
answer = chat_completion.choices[0].message.content
|
| 69 |
st.subheader("Answer:")
|
| 70 |
st.write(answer)
|
| 71 |
+
|
| 72 |
else:
|
| 73 |
st.error("Failed to extract text from the file. Please check the format.")
|
|
|