Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import PyPDF2
|
| 4 |
+
import docx
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from groq import Groq
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
+
|
| 10 |
+
# Set up Groq API
|
| 11 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 12 |
+
|
| 13 |
+
# Load embedding model
|
| 14 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 15 |
+
|
| 16 |
+
# Title and UI
|
| 17 |
+
st.set_page_config(page_title="A&Q From a File", page_icon="π")
|
| 18 |
+
st.title("π A&Q From a File")
|
| 19 |
+
|
| 20 |
+
# File Upload
|
| 21 |
+
uploaded_file = st.file_uploader("Upload a PDF or DOCX file", type=["pdf", "docx"])
|
| 22 |
+
|
| 23 |
+
if uploaded_file:
|
| 24 |
+
text = ""
|
| 25 |
+
|
| 26 |
+
# Extract text from PDF
|
| 27 |
+
if uploaded_file.type == "application/pdf":
|
| 28 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
| 29 |
+
for page in pdf_reader.pages:
|
| 30 |
+
text += page.extract_text() + "\n"
|
| 31 |
+
|
| 32 |
+
# Extract text from DOCX
|
| 33 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 34 |
+
doc = docx.Document(uploaded_file)
|
| 35 |
+
for para in doc.paragraphs:
|
| 36 |
+
text += para.text + "\n"
|
| 37 |
+
|
| 38 |
+
# Chunking the text
|
| 39 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 40 |
+
chunk_size=500, chunk_overlap=50
|
| 41 |
+
)
|
| 42 |
+
chunks = text_splitter.split_text(text)
|
| 43 |
+
|
| 44 |
+
# Embed chunks
|
| 45 |
+
embeddings = embedder.encode(chunks, convert_to_tensor=True)
|
| 46 |
+
|
| 47 |
+
# Query Input
|
| 48 |
+
user_query = st.text_input("Ask a question about the file:")
|
| 49 |
+
if user_query:
|
| 50 |
+
|
| 51 |
+
# Query Groq API
|
| 52 |
+
chat_completion = client.chat.completions.create(
|
| 53 |
+
messages=[
|
| 54 |
+
{"role": "user", "content": f"Answer this question based on the uploaded document: {user_query}"}
|
| 55 |
+
],
|
| 56 |
+
model="llama-3.3-70b-versatile",
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Display answer
|
| 60 |
+
st.subheader("Answer:")
|
| 61 |
+
st.write(chat_completion.choices[0].message.content)
|