Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HuggingFace Space: AST Training Dashboard
|
| 3 |
+
Live monitoring and model card generation
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import json
|
| 8 |
+
import time
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
from plotly.subplots import make_subplots
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
from adaptive_sparse_training import AdaptiveSparseTrainer, ASTConfig
|
| 15 |
+
import torch
|
| 16 |
+
import torchvision
|
| 17 |
+
import timm
|
| 18 |
+
HAS_DEPS = True
|
| 19 |
+
except ImportError:
|
| 20 |
+
HAS_DEPS = False
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ASTDashboard:
|
| 24 |
+
"""Real-time AST training dashboard"""
|
| 25 |
+
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.active_training = None
|
| 28 |
+
self.training_history = []
|
| 29 |
+
|
| 30 |
+
def start_training(
|
| 31 |
+
self,
|
| 32 |
+
model_name: str,
|
| 33 |
+
dataset: str,
|
| 34 |
+
activation_rate: float,
|
| 35 |
+
epochs: int,
|
| 36 |
+
progress=gr.Progress()
|
| 37 |
+
):
|
| 38 |
+
"""Start AST training with live updates"""
|
| 39 |
+
|
| 40 |
+
if not HAS_DEPS:
|
| 41 |
+
return "β Dependencies not installed", None, None
|
| 42 |
+
|
| 43 |
+
progress(0, desc="Initializing...")
|
| 44 |
+
|
| 45 |
+
# Load dataset (CIFAR-10 for demo)
|
| 46 |
+
train_loader, val_loader = self._get_dataloaders(dataset)
|
| 47 |
+
|
| 48 |
+
# Create model
|
| 49 |
+
progress(0.1, desc="Creating model...")
|
| 50 |
+
if model_name == "resnet18":
|
| 51 |
+
model = torchvision.models.resnet18(num_classes=10)
|
| 52 |
+
else:
|
| 53 |
+
model = timm.create_model(model_name, pretrained=False, num_classes=10)
|
| 54 |
+
|
| 55 |
+
# AST Config
|
| 56 |
+
config = ASTConfig(
|
| 57 |
+
target_activation_rate=activation_rate,
|
| 58 |
+
entropy_weight=1.0,
|
| 59 |
+
use_mixed_precision=True,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Start training
|
| 63 |
+
progress(0.2, desc="Starting training...")
|
| 64 |
+
trainer = AdaptiveSparseTrainer(model, train_loader, val_loader, config)
|
| 65 |
+
|
| 66 |
+
self.training_history = []
|
| 67 |
+
|
| 68 |
+
for epoch in range(epochs):
|
| 69 |
+
progress((epoch + 1) / epochs, desc=f"Epoch {epoch+1}/{epochs}")
|
| 70 |
+
|
| 71 |
+
# Train one epoch
|
| 72 |
+
epoch_stats = trainer.train_epoch(epoch)
|
| 73 |
+
val_acc = trainer.evaluate()
|
| 74 |
+
|
| 75 |
+
# Store history
|
| 76 |
+
self.training_history.append({
|
| 77 |
+
"epoch": epoch + 1,
|
| 78 |
+
"val_acc": val_acc,
|
| 79 |
+
"activation_rate": epoch_stats.get("activation_rate", activation_rate),
|
| 80 |
+
"threshold": epoch_stats.get("threshold", 1.0),
|
| 81 |
+
})
|
| 82 |
+
|
| 83 |
+
# Update dashboard
|
| 84 |
+
if (epoch + 1) % 5 == 0 or epoch == epochs - 1:
|
| 85 |
+
status = self._format_status(epoch + 1, epochs, val_acc, activation_rate)
|
| 86 |
+
plot = self._create_plot()
|
| 87 |
+
yield status, plot, None
|
| 88 |
+
|
| 89 |
+
# Generate model card
|
| 90 |
+
model_card = self._generate_model_card(model_name, activation_rate)
|
| 91 |
+
|
| 92 |
+
final_status = f"β
Training complete! Best accuracy: {max([h['val_acc'] for h in self.training_history]):.2%}"
|
| 93 |
+
|
| 94 |
+
yield final_status, self._create_plot(), model_card
|
| 95 |
+
|
| 96 |
+
def _get_dataloaders(self, dataset: str):
|
| 97 |
+
"""Get data loaders (CIFAR-10 demo)"""
|
| 98 |
+
import torchvision.transforms as transforms
|
| 99 |
+
from torch.utils.data import DataLoader
|
| 100 |
+
|
| 101 |
+
transform = transforms.Compose([
|
| 102 |
+
transforms.ToTensor(),
|
| 103 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 104 |
+
])
|
| 105 |
+
|
| 106 |
+
train_dataset = torchvision.datasets.CIFAR10(
|
| 107 |
+
root='./data', train=True, download=True, transform=transform
|
| 108 |
+
)
|
| 109 |
+
val_dataset = torchvision.datasets.CIFAR10(
|
| 110 |
+
root='./data', train=False, download=True, transform=transform
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2)
|
| 114 |
+
val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False, num_workers=2)
|
| 115 |
+
|
| 116 |
+
return train_loader, val_loader
|
| 117 |
+
|
| 118 |
+
def _format_status(self, epoch: int, total_epochs: int, accuracy: float, activation_rate: float):
|
| 119 |
+
"""Format training status"""
|
| 120 |
+
return f"""
|
| 121 |
+
### π Training in Progress
|
| 122 |
+
|
| 123 |
+
**Epoch:** {epoch}/{total_epochs}
|
| 124 |
+
**Accuracy:** {accuracy:.2%}
|
| 125 |
+
**Activation Rate:** {activation_rate:.1%}
|
| 126 |
+
**Energy Savings:** ~{(1-activation_rate)*100:.0f}%
|
| 127 |
+
|
| 128 |
+
*Updating every 5 epochs...*
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
def _create_plot(self):
|
| 132 |
+
"""Create live training plot"""
|
| 133 |
+
if not self.training_history:
|
| 134 |
+
return None
|
| 135 |
+
|
| 136 |
+
fig = make_subplots(
|
| 137 |
+
rows=2, cols=2,
|
| 138 |
+
subplot_titles=("Validation Accuracy", "Activation Rate", "Threshold Evolution", "Energy Savings"),
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
epochs = [h["epoch"] for h in self.training_history]
|
| 142 |
+
accuracies = [h["val_acc"] * 100 for h in self.training_history]
|
| 143 |
+
activation_rates = [h["activation_rate"] * 100 for h in self.training_history]
|
| 144 |
+
thresholds = [h["threshold"] for h in self.training_history]
|
| 145 |
+
savings = [(1 - h["activation_rate"]) * 100 for h in self.training_history]
|
| 146 |
+
|
| 147 |
+
# Accuracy plot
|
| 148 |
+
fig.add_trace(
|
| 149 |
+
go.Scatter(x=epochs, y=accuracies, mode='lines+markers', name='Val Accuracy',
|
| 150 |
+
line=dict(color='#3498db', width=3)),
|
| 151 |
+
row=1, col=1
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Activation rate plot
|
| 155 |
+
fig.add_trace(
|
| 156 |
+
go.Scatter(x=epochs, y=activation_rates, mode='lines+markers', name='Activation Rate',
|
| 157 |
+
line=dict(color='#e74c3c', width=3)),
|
| 158 |
+
row=1, col=2
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Threshold plot
|
| 162 |
+
fig.add_trace(
|
| 163 |
+
go.Scatter(x=epochs, y=thresholds, mode='lines+markers', name='Threshold',
|
| 164 |
+
line=dict(color='#f39c12', width=3)),
|
| 165 |
+
row=2, col=1
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Energy savings plot
|
| 169 |
+
fig.add_trace(
|
| 170 |
+
go.Scatter(x=epochs, y=savings, mode='lines+markers', name='Energy Savings',
|
| 171 |
+
line=dict(color='#27ae60', width=3), fill='tozeroy'),
|
| 172 |
+
row=2, col=2
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
fig.update_xaxes(title_text="Epoch")
|
| 176 |
+
fig.update_yaxes(title_text="Accuracy (%)", row=1, col=1)
|
| 177 |
+
fig.update_yaxes(title_text="Activation (%)", row=1, col=2)
|
| 178 |
+
fig.update_yaxes(title_text="Threshold", row=2, col=1)
|
| 179 |
+
fig.update_yaxes(title_text="Savings (%)", row=2, col=2)
|
| 180 |
+
|
| 181 |
+
fig.update_layout(height=600, showlegend=False)
|
| 182 |
+
|
| 183 |
+
return fig
|
| 184 |
+
|
| 185 |
+
def _generate_model_card(self, model_name: str, activation_rate: float):
|
| 186 |
+
"""Generate HuggingFace model card"""
|
| 187 |
+
|
| 188 |
+
best_acc = max([h["val_acc"] for h in self.training_history])
|
| 189 |
+
energy_savings = (1 - activation_rate) * 100
|
| 190 |
+
|
| 191 |
+
return f"""---
|
| 192 |
+
tags:
|
| 193 |
+
- adaptive-sparse-training
|
| 194 |
+
- energy-efficient
|
| 195 |
+
- sustainability
|
| 196 |
+
metrics:
|
| 197 |
+
- accuracy
|
| 198 |
+
- energy_savings
|
| 199 |
+
---
|
| 200 |
+
|
| 201 |
+
# {model_name} (AST-Trained)
|
| 202 |
+
|
| 203 |
+
**Trained with {energy_savings:.0f}% less energy than standard training** β‘
|
| 204 |
+
|
| 205 |
+
## Model Details
|
| 206 |
+
- **Architecture:** {model_name}
|
| 207 |
+
- **Dataset:** CIFAR-10
|
| 208 |
+
- **Training Method:** Adaptive Sparse Training (AST)
|
| 209 |
+
- **Target Activation Rate:** {activation_rate:.0%}
|
| 210 |
+
|
| 211 |
+
## Performance
|
| 212 |
+
- **Accuracy:** {best_acc:.2%}
|
| 213 |
+
- **Energy Savings:** {energy_savings:.0f}%
|
| 214 |
+
- **Training Epochs:** {len(self.training_history)}
|
| 215 |
+
|
| 216 |
+
## Sustainability Report
|
| 217 |
+
This model was trained using Adaptive Sparse Training, which dynamically selects
|
| 218 |
+
the most important training samples. This resulted in:
|
| 219 |
+
|
| 220 |
+
- β‘ **{energy_savings:.0f}% energy savings** compared to standard training
|
| 221 |
+
- π **Lower carbon footprint**
|
| 222 |
+
- β±οΈ **Faster training time**
|
| 223 |
+
- π― **Maintained accuracy** (minimal degradation)
|
| 224 |
+
|
| 225 |
+
## How to Use
|
| 226 |
+
|
| 227 |
+
```python
|
| 228 |
+
import torch
|
| 229 |
+
from torchvision import models
|
| 230 |
+
|
| 231 |
+
# Load model
|
| 232 |
+
model = models.{model_name}(num_classes=10)
|
| 233 |
+
model.load_state_dict(torch.load("pytorch_model.bin"))
|
| 234 |
+
model.eval()
|
| 235 |
+
|
| 236 |
+
# Inference
|
| 237 |
+
# ... (your inference code)
|
| 238 |
+
```
|
| 239 |
+
|
| 240 |
+
## Training Details
|
| 241 |
+
|
| 242 |
+
**AST Configuration:**
|
| 243 |
+
- Target Activation Rate: {activation_rate:.0%}
|
| 244 |
+
- Entropy Weight: 1.0
|
| 245 |
+
- PI Controller: Enabled
|
| 246 |
+
- Mixed Precision: Enabled
|
| 247 |
+
|
| 248 |
+
## Reproducing This Model
|
| 249 |
+
|
| 250 |
+
```bash
|
| 251 |
+
pip install adaptive-sparse-training
|
| 252 |
+
|
| 253 |
+
python -c "
|
| 254 |
+
from adaptive_sparse_training import AdaptiveSparseTrainer, ASTConfig
|
| 255 |
+
config = ASTConfig(target_activation_rate={activation_rate})
|
| 256 |
+
# ... (full training code)
|
| 257 |
+
"
|
| 258 |
+
```
|
| 259 |
+
|
| 260 |
+
## Citation
|
| 261 |
+
|
| 262 |
+
If you use this model or AST, please cite:
|
| 263 |
+
|
| 264 |
+
```bibtex
|
| 265 |
+
@software{{adaptive_sparse_training,
|
| 266 |
+
title={{Adaptive Sparse Training}},
|
| 267 |
+
author={{Idiakhoa, Oluwafemi}},
|
| 268 |
+
year={{2024}},
|
| 269 |
+
url={{https://github.com/oluwafemidiakhoa/adaptive-sparse-training}}
|
| 270 |
+
}}
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
## Acknowledgments
|
| 274 |
+
|
| 275 |
+
Trained using the `adaptive-sparse-training` package. Special thanks to the PyTorch and HuggingFace communities.
|
| 276 |
+
|
| 277 |
+
---
|
| 278 |
+
|
| 279 |
+
*This model card was auto-generated by the AST Training Dashboard.*
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# Initialize dashboard
|
| 284 |
+
dashboard = ASTDashboard()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Gradio Interface
|
| 288 |
+
def create_demo():
|
| 289 |
+
"""Create Gradio demo interface"""
|
| 290 |
+
|
| 291 |
+
with gr.Blocks(title="AST Training Dashboard", theme=gr.themes.Soft()) as demo:
|
| 292 |
+
gr.Markdown("""
|
| 293 |
+
# β‘ Adaptive Sparse Training Dashboard
|
| 294 |
+
|
| 295 |
+
Train models with **60-70% less energy** while maintaining accuracy!
|
| 296 |
+
|
| 297 |
+
This demo trains a model on CIFAR-10 using AST and generates a HuggingFace model card.
|
| 298 |
+
""")
|
| 299 |
+
|
| 300 |
+
with gr.Row():
|
| 301 |
+
with gr.Column(scale=1):
|
| 302 |
+
gr.Markdown("### βοΈ Configuration")
|
| 303 |
+
|
| 304 |
+
model_name = gr.Dropdown(
|
| 305 |
+
choices=["resnet18", "efficientnet_b0", "mobilenetv3_small_100"],
|
| 306 |
+
value="resnet18",
|
| 307 |
+
label="Model Architecture"
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
dataset = gr.Dropdown(
|
| 311 |
+
choices=["cifar10"],
|
| 312 |
+
value="cifar10",
|
| 313 |
+
label="Dataset"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
activation_rate = gr.Slider(
|
| 317 |
+
minimum=0.2,
|
| 318 |
+
maximum=0.8,
|
| 319 |
+
value=0.35,
|
| 320 |
+
step=0.05,
|
| 321 |
+
label="Target Activation Rate (lower = more savings)"
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
gr.Markdown(f"**Energy Savings:** ~{(1-0.35)*100:.0f}%")
|
| 325 |
+
|
| 326 |
+
epochs = gr.Slider(
|
| 327 |
+
minimum=10,
|
| 328 |
+
maximum=100,
|
| 329 |
+
value=30,
|
| 330 |
+
step=10,
|
| 331 |
+
label="Training Epochs"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
train_btn = gr.Button("π Start Training", variant="primary", size="lg")
|
| 335 |
+
|
| 336 |
+
with gr.Column(scale=2):
|
| 337 |
+
gr.Markdown("### π Live Training Metrics")
|
| 338 |
+
|
| 339 |
+
status = gr.Markdown("*Ready to train...*")
|
| 340 |
+
plot = gr.Plot()
|
| 341 |
+
|
| 342 |
+
with gr.Row():
|
| 343 |
+
with gr.Column():
|
| 344 |
+
gr.Markdown("### π Generated Model Card")
|
| 345 |
+
model_card = gr.Textbox(
|
| 346 |
+
label="HuggingFace Model Card (Markdown)",
|
| 347 |
+
lines=20,
|
| 348 |
+
max_lines=30,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
gr.Markdown("""
|
| 352 |
+
**Next Steps:**
|
| 353 |
+
1. Copy the model card above
|
| 354 |
+
2. Create a new model on [HuggingFace Hub](https://huggingface.co/new)
|
| 355 |
+
3. Paste the model card into `README.md`
|
| 356 |
+
4. Upload your trained model weights
|
| 357 |
+
""")
|
| 358 |
+
|
| 359 |
+
# Training logic
|
| 360 |
+
train_btn.click(
|
| 361 |
+
fn=dashboard.start_training,
|
| 362 |
+
inputs=[model_name, dataset, activation_rate, epochs],
|
| 363 |
+
outputs=[status, plot, model_card],
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
gr.Markdown("""
|
| 367 |
+
---
|
| 368 |
+
|
| 369 |
+
## π Learn More
|
| 370 |
+
|
| 371 |
+
- π¦ [PyPI Package](https://pypi.org/project/adaptive-sparse-training/)
|
| 372 |
+
- π [GitHub Repo](https://github.com/oluwafemidiakhoa/adaptive-sparse-training)
|
| 373 |
+
- π [Documentation](https://github.com/oluwafemidiakhoa/adaptive-sparse-training#readme)
|
| 374 |
+
|
| 375 |
+
**Made with β€οΈ using Adaptive Sparse Training**
|
| 376 |
+
""")
|
| 377 |
+
|
| 378 |
+
return demo
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
if __name__ == "__main__":
|
| 382 |
+
demo = create_demo()
|
| 383 |
+
demo.launch()
|