File size: 48,034 Bytes
9009981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 |
import os
import base64
import cv2
import numpy as np
from PIL import Image
import pytesseract
import requests
from urllib.parse import urlparse, urljoin
from bs4 import BeautifulSoup
import html2text
import json
import time
import webbrowser
import urllib.parse
import copy
import html
import tempfile
import uuid
import datetime
import threading
import atexit
from huggingface_hub import HfApi
import gradio as gr
import subprocess
import re
# ---------------------------------------------------------------------------
# Video temp-file management (per-session tracking and cleanup)
# ---------------------------------------------------------------------------
VIDEO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_videos")
VIDEO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
_SESSION_VIDEO_FILES: Dict[str, List[str]] = {}
_VIDEO_FILES_LOCK = threading.Lock()
def _ensure_video_dir_exists() -> None:
try:
os.makedirs(VIDEO_TEMP_DIR, exist_ok=True)
except Exception:
pass
def _register_video_for_session(session_id: Optional[str], file_path: str) -> None:
if not session_id or not file_path:
return
with _VIDEO_FILES_LOCK:
if session_id not in _SESSION_VIDEO_FILES:
_SESSION_VIDEO_FILES[session_id] = []
_SESSION_VIDEO_FILES[session_id].append(file_path)
def cleanup_session_videos(session_id: Optional[str]) -> None:
if not session_id:
return
with _VIDEO_FILES_LOCK:
file_list = _SESSION_VIDEO_FILES.pop(session_id, [])
for path in file_list:
try:
if path and os.path.exists(path):
os.unlink(path)
except Exception:
# Best-effort cleanup
pass
def reap_old_videos(ttl_seconds: int = VIDEO_FILE_TTL_SECONDS) -> None:
"""Delete old video files in the temp directory based on modification time."""
try:
_ensure_video_dir_exists()
now_ts = time.time()
for name in os.listdir(VIDEO_TEMP_DIR):
path = os.path.join(VIDEO_TEMP_DIR, name)
try:
if not os.path.isfile(path):
continue
mtime = os.path.getmtime(path)
if now_ts - mtime > ttl_seconds:
os.unlink(path)
except Exception:
pass
except Exception:
# Temp dir might not exist or be accessible; ignore
pass
# ---------------------------------------------------------------------------
# Audio temp-file management (per-session tracking and cleanup)
# ---------------------------------------------------------------------------
AUDIO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_audio")
AUDIO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
_SESSION_AUDIO_FILES: Dict[str, List[str]] = {}
_AUDIO_FILES_LOCK = threading.Lock()
def _ensure_audio_dir_exists() -> None:
try:
os.makedirs(AUDIO_TEMP_DIR, exist_ok=True)
except Exception:
pass
def _register_audio_for_session(session_id: Optional[str], file_path: str) -> None:
if not session_id or not file_path:
return
with _AUDIO_FILES_LOCK:
if session_id not in _SESSION_AUDIO_FILES:
_SESSION_AUDIO_FILES[session_id] = []
_SESSION_AUDIO_FILES[session_id].append(file_path)
def cleanup_session_audio(session_id: Optional[str]) -> None:
if not session_id:
return
with _AUDIO_FILES_LOCK:
file_list = _SESSION_AUDIO_FILES.pop(session_id, [])
for path in file_list:
try:
if path and os.path.exists(path):
os.unlink(path)
except Exception:
pass
def reap_old_audio(ttl_seconds: int = AUDIO_FILE_TTL_SECONDS) -> None:
try:
_ensure_audio_dir_exists()
now_ts = time.time()
for name in os.listdir(AUDIO_TEMP_DIR):
path = os.path.join(AUDIO_TEMP_DIR, name)
try:
if not os.path.isfile(path):
continue
mtime = os.path.getmtime(path)
if now_ts - mtime > ttl_seconds:
os.unlink(path)
except Exception:
pass
except Exception:
pass
# ---------------------------------------------------------------------------
# General temp media file management (per-session tracking and cleanup)
# ---------------------------------------------------------------------------
MEDIA_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_media")
MEDIA_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
_SESSION_MEDIA_FILES: Dict[str, List[str]] = {}
_MEDIA_FILES_LOCK = threading.Lock()
# Global dictionary to store temporary media files for the session
temp_media_files = {}
def _ensure_media_dir_exists() -> None:
"""Ensure the media temp directory exists."""
try:
os.makedirs(MEDIA_TEMP_DIR, exist_ok=True)
except Exception:
pass
def track_session_media_file(session_id: Optional[str], file_path: str) -> None:
"""Track a media file for session-based cleanup."""
if not session_id or not file_path:
return
with _MEDIA_FILES_LOCK:
if session_id not in _SESSION_MEDIA_FILES:
_SESSION_MEDIA_FILES[session_id] = []
_SESSION_MEDIA_FILES[session_id].append(file_path)
def cleanup_session_media(session_id: Optional[str]) -> None:
"""Clean up media files for a specific session."""
if not session_id:
return
with _MEDIA_FILES_LOCK:
files_to_clean = _SESSION_MEDIA_FILES.pop(session_id, [])
for path in files_to_clean:
try:
if path and os.path.exists(path):
os.unlink(path)
except Exception:
# Best-effort cleanup
pass
def reap_old_media(ttl_seconds: int = MEDIA_FILE_TTL_SECONDS) -> None:
"""Delete old media files in the temp directory based on modification time."""
try:
_ensure_media_dir_exists()
now_ts = time.time()
for name in os.listdir(MEDIA_TEMP_DIR):
path = os.path.join(MEDIA_TEMP_DIR, name)
if os.path.isfile(path):
try:
mtime = os.path.getmtime(path)
if (now_ts - mtime) > ttl_seconds:
os.unlink(path)
except Exception:
pass
except Exception:
# Temp dir might not exist or be accessible; ignore
pass
def cleanup_all_temp_media_on_startup() -> None:
"""Clean up all temporary media files on app startup."""
try:
# Clean up temp_media_files registry
temp_media_files.clear()
# Clean up actual files from disk (assume all are orphaned on startup)
_ensure_media_dir_exists()
for name in os.listdir(MEDIA_TEMP_DIR):
path = os.path.join(MEDIA_TEMP_DIR, name)
if os.path.isfile(path):
try:
os.unlink(path)
except Exception:
pass
# Clear session tracking
with _MEDIA_FILES_LOCK:
_SESSION_MEDIA_FILES.clear()
print("[StartupCleanup] Cleaned up orphaned temporary media files")
except Exception as e:
print(f"[StartupCleanup] Error during media cleanup: {str(e)}")
def cleanup_all_temp_media_on_shutdown() -> None:
"""Clean up all temporary media files on app shutdown."""
try:
print("[ShutdownCleanup] Cleaning up temporary media files...")
# Clean up temp_media_files registry and remove files
for file_id, file_info in temp_media_files.items():
try:
if os.path.exists(file_info['path']):
os.unlink(file_info['path'])
except Exception:
pass
temp_media_files.clear()
# Clean up all session files
with _MEDIA_FILES_LOCK:
for session_id, file_paths in _SESSION_MEDIA_FILES.items():
for path in file_paths:
try:
if path and os.path.exists(path):
os.unlink(path)
except Exception:
pass
_SESSION_MEDIA_FILES.clear()
print("[ShutdownCleanup] Temporary media cleanup completed")
except Exception as e:
print(f"[ShutdownCleanup] Error during cleanup: {str(e)}")
# Register shutdown cleanup handler
atexit.register(cleanup_all_temp_media_on_shutdown)
def create_temp_media_url(media_bytes: bytes, filename: str, media_type: str = "image", session_id: Optional[str] = None) -> str:
"""Create a temporary file and return a local URL for preview."""
try:
# Create unique filename with timestamp and UUID
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
base_name, ext = os.path.splitext(filename)
unique_filename = f"{media_type}_{timestamp}_{unique_id}_{base_name}{ext}"
# Create temporary file in the dedicated directory
_ensure_media_dir_exists()
temp_path = os.path.join(MEDIA_TEMP_DIR, unique_filename)
# Write media bytes to temporary file
with open(temp_path, 'wb') as f:
f.write(media_bytes)
# Track file for session-based cleanup
if session_id:
track_session_media_file(session_id, temp_path)
# Store the file info for later upload
file_id = f"{media_type}_{unique_id}"
temp_media_files[file_id] = {
'path': temp_path,
'filename': filename,
'media_type': media_type,
'media_bytes': media_bytes
}
# Return file:// URL for preview
file_url = f"file://{temp_path}"
print(f"[TempMedia] Created temporary {media_type} file: {file_url}")
return file_url
except Exception as e:
print(f"[TempMedia] Failed to create temporary file: {str(e)}")
return f"Error creating temporary {media_type} file: {str(e)}"
def upload_media_to_hf(media_bytes: bytes, filename: str, media_type: str = "image", token: gr.OAuthToken | None = None, use_temp: bool = True) -> str:
"""Upload media file to user's Hugging Face account or create temporary file."""
try:
# If use_temp is True, create temporary file for preview
if use_temp:
return create_temp_media_url(media_bytes, filename, media_type)
# Otherwise, upload to Hugging Face for permanent URL
# Try to get token from OAuth first, then fall back to environment variable
hf_token = None
if token and token.token:
hf_token = token.token
else:
hf_token = os.getenv('HF_TOKEN')
if not hf_token:
return "Error: Please log in with your Hugging Face account to upload media, or set HF_TOKEN environment variable."
# Initialize HF API
api = HfApi(token=hf_token)
# Get current user info to determine username
try:
user_info = api.whoami()
username = user_info.get('name', 'unknown-user')
except Exception as e:
print(f"[HFUpload] Could not get user info: {e}")
username = 'anycoder-user'
# Create repository name for media storage
repo_name = f"{username}/anycoder-media"
# Try to create the repository if it doesn't exist
try:
api.create_repo(
repo_id=repo_name,
repo_type="dataset",
private=False,
exist_ok=True
)
print(f"[HFUpload] Repository {repo_name} ready")
except Exception as e:
print(f"[HFUpload] Repository creation/access issue: {e}")
# Continue anyway, repo might already exist
# Create unique filename with timestamp and UUID
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
base_name, ext = os.path.splitext(filename)
unique_filename = f"{media_type}/{timestamp}_{unique_id}_{base_name}{ext}"
# Create temporary file for upload
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
temp_file.write(media_bytes)
temp_path = temp_file.name
try:
# Upload file to HF repository
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=unique_filename,
repo_id=repo_name,
repo_type="dataset",
commit_message=f"Upload {media_type} generated by AnyCoder"
)
# Generate permanent URL
permanent_url = f"https://huggingface.co/datasets/{repo_name}/resolve/main/{unique_filename}"
print(f"[HFUpload] Successfully uploaded {media_type} to {permanent_url}")
return permanent_url
finally:
# Clean up temporary file
try:
os.unlink(temp_path)
except Exception:
pass
except Exception as e:
print(f"[HFUpload] Upload failed: {str(e)}")
return f"Error uploading {media_type} to Hugging Face: {str(e)}"
def upload_temp_files_to_hf_and_replace_urls(html_content: str, token: gr.OAuthToken | None = None) -> str:
"""Upload all temporary media files to HF and replace their URLs in HTML content."""
try:
if not temp_media_files:
print("[DeployUpload] No temporary media files to upload")
return html_content
print(f"[DeployUpload] Uploading {len(temp_media_files)} temporary media files to HF")
updated_content = html_content
for file_id, file_info in temp_media_files.items():
try:
# Upload to HF with permanent URL
permanent_url = upload_media_to_hf(
file_info['media_bytes'],
file_info['filename'],
file_info['media_type'],
token,
use_temp=False # Force permanent upload
)
if not permanent_url.startswith("Error"):
# Replace the temporary file URL with permanent URL
temp_url = f"file://{file_info['path']}"
updated_content = updated_content.replace(temp_url, permanent_url)
print(f"[DeployUpload] Replaced {temp_url} with {permanent_url}")
else:
print(f"[DeployUpload] Failed to upload {file_id}: {permanent_url}")
except Exception as e:
print(f"[DeployUpload] Error uploading {file_id}: {str(e)}")
continue
# Clean up temporary files after upload
cleanup_temp_media_files()
return updated_content
except Exception as e:
print(f"[DeployUpload] Failed to upload temporary files: {str(e)}")
return html_content
def cleanup_temp_media_files():
"""Clean up temporary media files from disk and memory."""
try:
for file_id, file_info in temp_media_files.items():
try:
if os.path.exists(file_info['path']):
os.remove(file_info['path'])
print(f"[TempCleanup] Removed {file_info['path']}")
except Exception as e:
print(f"[TempCleanup] Failed to remove {file_info['path']}: {str(e)}")
# Clear the global dictionary
temp_media_files.clear()
print("[TempCleanup] Cleared temporary media files registry")
except Exception as e:
print(f"[TempCleanup] Error during cleanup: {str(e)}")
def generate_image_with_qwen(prompt: str, image_index: int = 0, token: gr.OAuthToken | None = None) -> str:
"""Generate image using Qwen image model via Hugging Face InferenceClient and upload to HF for permanent URL"""
try:
# Check if HF_TOKEN is available
if not os.getenv('HF_TOKEN'):
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
# Create InferenceClient for Qwen image generation
client = InferenceClient(
provider="auto",
api_key=os.getenv('HF_TOKEN'),
bill_to="huggingface",
)
# Generate image using Qwen/Qwen-Image model
image = client.text_to_image(
prompt,
model="Qwen/Qwen-Image",
)
# Resize image to reduce size while maintaining quality
max_size = 1024 # Increased size since we're not using data URIs
if image.width > max_size or image.height > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Convert PIL Image to bytes for upload
import io
buffer = io.BytesIO()
# Save as JPEG with good quality since we're not embedding
image.convert('RGB').save(buffer, format='JPEG', quality=90, optimize=True)
image_bytes = buffer.getvalue()
# Create temporary URL for preview (will be uploaded to HF during deploy)
filename = f"generated_image_{image_index}.jpg"
temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
# Check if creation was successful
if temp_url.startswith("Error"):
return temp_url
# Return HTML img tag with temporary URL
return f'<img src="{temp_url}" alt="{prompt}" style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;" loading="lazy" />'
except Exception as e:
print(f"Image generation error: {str(e)}")
return f"Error generating image: {str(e)}"
def generate_image_to_image(input_image_data, prompt: str, token: gr.OAuthToken | None = None) -> str:
"""Generate an image using image-to-image with Qwen-Image-Edit via Hugging Face InferenceClient."""
try:
# Check token
if not os.getenv('HF_TOKEN'):
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
# Prepare client
client = InferenceClient(
provider="auto",
api_key=os.getenv('HF_TOKEN'),
bill_to="huggingface",
)
# Normalize input image to bytes
import io
from PIL import Image
try:
import numpy as np
except Exception:
np = None
if hasattr(input_image_data, 'read'):
# File-like object
raw = input_image_data.read()
pil_image = Image.open(io.BytesIO(raw))
elif hasattr(input_image_data, 'mode') and hasattr(input_image_data, 'size'):
# PIL Image
pil_image = input_image_data
elif np is not None and isinstance(input_image_data, np.ndarray):
pil_image = Image.fromarray(input_image_data)
elif isinstance(input_image_data, (bytes, bytearray)):
pil_image = Image.open(io.BytesIO(input_image_data))
else:
# Fallback: try to convert via bytes
pil_image = Image.open(io.BytesIO(bytes(input_image_data)))
# Ensure RGB
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
# Resize input image to avoid request body size limits
max_input_size = 1024
if pil_image.width > max_input_size or pil_image.height > max_input_size:
pil_image.thumbnail((max_input_size, max_input_size), Image.Resampling.LANCZOS)
buf = io.BytesIO()
pil_image.save(buf, format='JPEG', quality=85, optimize=True)
input_bytes = buf.getvalue()
# Call image-to-image
image = client.image_to_image(
input_bytes,
prompt=prompt,
model="Qwen/Qwen-Image-Edit",
)
# Resize/optimize (larger since not using data URIs)
max_size = 1024
if image.width > max_size or image.height > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
out_buf = io.BytesIO()
image.convert('RGB').save(out_buf, format='JPEG', quality=90, optimize=True)
image_bytes = out_buf.getvalue()
# Create temporary URL for preview (will be uploaded to HF during deploy)
filename = "image_to_image_result.jpg"
temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
# Check if creation was successful
if temp_url.startswith("Error"):
return temp_url
return f"<img src=\"{temp_url}\" alt=\"{prompt}\" style=\"max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;\" loading=\"lazy\" />"
except Exception as e:
print(f"Image-to-image generation error: {str(e)}")
return f"Error generating image (image-to-image): {str(e)}"
def generate_video_from_image(input_image_data, prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
"""Generate a video from an input image and prompt using Hugging Face InferenceClient."""
try:
print("[Image2Video] Starting video generation")
if not os.getenv('HF_TOKEN'):
print("[Image2Video] Missing HF_TOKEN")
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
# Prepare client
client = InferenceClient(
provider="auto",
api_key=os.getenv('HF_TOKEN'),
bill_to="huggingface",
)
print(f"[Image2Video] InferenceClient initialized (provider=auto)")
# Normalize input image to bytes, with downscale/compress to cap request size
import io
from PIL import Image
try:
import numpy as np
except Exception:
np = None
def _load_pil(img_like) -> Image.Image:
if hasattr(img_like, 'read'):
return Image.open(io.BytesIO(img_like.read()))
if hasattr(img_like, 'mode') and hasattr(img_like, 'size'):
return img_like
if np is not None and isinstance(img_like, np.ndarray):
return Image.fromarray(img_like)
if isinstance(img_like, (bytes, bytearray)):
return Image.open(io.BytesIO(img_like))
return Image.open(io.BytesIO(bytes(img_like)))
pil_image = _load_pil(input_image_data)
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
try:
print(f"[Image2Video] Input PIL image size={pil_image.size} mode={pil_image.mode}")
except Exception:
pass
# Progressive encode to keep payload under ~3.9MB (below 4MB limit)
MAX_BYTES = 3_900_000
max_dim = 1024 # initial cap on longest edge
quality = 90
def encode_current(pil: Image.Image, q: int) -> bytes:
tmp = io.BytesIO()
pil.save(tmp, format='JPEG', quality=q, optimize=True)
return tmp.getvalue()
# Downscale while the longest edge exceeds max_dim
while max(pil_image.size) > max_dim:
ratio = max_dim / float(max(pil_image.size))
new_size = (max(1, int(pil_image.size[0] * ratio)), max(1, int(pil_image.size[1] * ratio)))
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
encoded = encode_current(pil_image, quality)
# If still too big, iteratively reduce quality, then dimensions
while len(encoded) > MAX_BYTES and (quality > 40 or max(pil_image.size) > 640):
if quality > 40:
quality -= 10
else:
# reduce dims by 15% if already at low quality
new_w = max(1, int(pil_image.size[0] * 0.85))
new_h = max(1, int(pil_image.size[1] * 0.85))
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
encoded = encode_current(pil_image, quality)
input_bytes = encoded
# Call image-to-video; require method support
model_id = "Lightricks/LTX-Video-0.9.8-13B-distilled"
image_to_video_method = getattr(client, "image_to_video", None)
if not callable(image_to_video_method):
print("[Image2Video] InferenceClient.image_to_video not available in this huggingface_hub version")
return (
"Error generating video (image-to-video): Your installed huggingface_hub version "
"does not expose InferenceClient.image_to_video. Please upgrade with "
"`pip install -U huggingface_hub` and try again."
)
print(f"[Image2Video] Calling image_to_video with model={model_id}, prompt length={len(prompt or '')}")
video_bytes = image_to_video_method(
input_bytes,
prompt=prompt,
model=model_id,
)
print(f"[Image2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown length'}")
# Create temporary URL for preview (will be uploaded to HF during deploy)
filename = "image_to_video_result.mp4"
temp_url = upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
# Check if creation was successful
if temp_url.startswith("Error"):
return temp_url
video_html = (
f'<video controls autoplay muted loop playsinline '
f'style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;" '
f'onloadstart="this.style.backgroundColor=\'#f0f0f0\'" '
f'onerror="this.style.display=\'none\'; console.error(\'Video failed to load\')">'
f'<source src="{temp_url}" type="video/mp4" />'
f'<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>'
f'</video>'
)
print(f"[Image2Video] Successfully generated video HTML tag with temporary URL: {temp_url}")
# Validate the generated video HTML
if not validate_video_html(video_html):
print("[Image2Video] Generated video HTML failed validation")
return "Error: Generated video HTML is malformed"
return video_html
except Exception as e:
import traceback
print("[Image2Video] Exception during generation:")
traceback.print_exc()
print(f"Image-to-video generation error: {str(e)}")
return f"Error generating video (image-to-video): {str(e)}"
def generate_video_from_text(prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
"""Generate a video from a text prompt using Hugging Face InferenceClient."""
try:
print("[Text2Video] Starting video generation from text")
if not os.getenv('HF_TOKEN'):
print("[Text2Video] Missing HF_TOKEN")
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
client = InferenceClient(
provider="auto",
api_key=os.getenv('HF_TOKEN'),
bill_to="huggingface",
)
print("[Text2Video] InferenceClient initialized (provider=auto)")
# Ensure the client has text_to_video (newer huggingface_hub)
text_to_video_method = getattr(client, "text_to_video", None)
if not callable(text_to_video_method):
print("[Text2Video] InferenceClient.text_to_video not available in this huggingface_hub version")
return (
"Error generating video (text-to-video): Your installed huggingface_hub version "
"does not expose InferenceClient.text_to_video. Please upgrade with "
"`pip install -U huggingface_hub` and try again."
)
model_id = "Wan-AI/Wan2.2-T2V-A14B"
prompt_str = (prompt or "").strip()
print(f"[Text2Video] Calling text_to_video with model={model_id}, prompt length={len(prompt_str)}")
video_bytes = text_to_video_method(
prompt_str,
model=model_id,
)
print(f"[Text2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown length'}")
# Create temporary URL for preview (will be uploaded to HF during deploy)
filename = "text_to_video_result.mp4"
temp_url = upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
# Check if creation was successful
if temp_url.startswith("Error"):
return temp_url
video_html = (
f'<video controls autoplay muted loop playsinline '
f'style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;" '
f'onloadstart="this.style.backgroundColor=\'#f0f0f0\'" '
f'onerror="this.style.display=\'none\'; console.error(\'Video failed to load\')">'
f'<source src="{temp_url}" type="video/mp4" />'
f'<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>'
f'</video>'
)
print(f"[Text2Video] Successfully generated video HTML tag with temporary URL: {temp_url}")
# Validate the generated video HTML
if not validate_video_html(video_html):
print("[Text2Video] Generated video HTML failed validation")
return "Error: Generated video HTML is malformed"
return video_html
except Exception as e:
import traceback
print("[Text2Video] Exception during generation:")
traceback.print_exc()
print(f"Text-to-video generation error: {str(e)}")
return f"Error generating video (text-to-video): {str(e)}"
def generate_music_from_text(prompt: str, music_length_ms: int = 30000, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
"""Generate music from a text prompt using ElevenLabs Music API and return an HTML <audio> tag."""
try:
api_key = os.getenv('ELEVENLABS_API_KEY')
if not api_key:
return "Error: ELEVENLABS_API_KEY environment variable is not set."
headers = {
'Content-Type': 'application/json',
'xi-api-key': api_key,
}
payload = {
'prompt': (prompt or 'Epic orchestral theme with soaring strings and powerful brass'),
'music_length_ms': int(music_length_ms) if music_length_ms else 30000,
}
resp = requests.post('https://api.elevenlabs.io/v1/music/compose', headers=headers, json=payload)
try:
resp.raise_for_status()
except Exception as e:
return f"Error generating music: {getattr(e, 'response', resp).text if hasattr(e, 'response') else resp.text}"
# Create temporary URL for preview (will be uploaded to HF during deploy)
filename = "generated_music.mp3"
temp_url = upload_media_to_hf(resp.content, filename, "audio", token, use_temp=True)
# Check if creation was successful
if temp_url.startswith("Error"):
return temp_url
audio_html = (
"<div class=\"anycoder-music\" style=\"max-width:420px;margin:16px auto;padding:12px 16px;border:1px solid #e5e7eb;border-radius:12px;background:linear-gradient(180deg,#fafafa,#f3f4f6);box-shadow:0 2px 8px rgba(0,0,0,0.06)\">"
" <div style=\"font-size:13px;color:#374151;margin-bottom:8px;display:flex:align-items:center;gap:6px\">"
" <span>🎵 Generated music</span>"
" </div>"
f" <audio controls autoplay loop style=\"width:100%;outline:none;\">"
f" <source src=\"{temp_url}\" type=\"audio/mpeg\" />"
" Your browser does not support the audio element."
" </audio>"
"</div>"
)
print(f"[Music] Successfully generated music HTML tag with temporary URL: {temp_url}")
return audio_html
except Exception as e:
return f"Error generating music: {str(e)}"
def extract_image_prompts_from_text(text: str, num_images_needed: int = 1) -> list:
"""Extract image generation prompts from the full text based on number of images needed"""
# Use the entire text as the base prompt for image generation
# Clean up the text and create variations for the required number of images
# Clean the text
cleaned_text = text.strip()
if not cleaned_text:
return []
# Create variations of the prompt for the required number of images
prompts = []
# Generate exactly the number of images needed
for i in range(num_images_needed):
if i == 0:
# First image: Use the full prompt as-is
prompts.append(cleaned_text)
elif i == 1:
# Second image: Add "visual representation" to make it more image-focused
prompts.append(f"Visual representation of {cleaned_text}")
elif i == 2:
# Third image: Add "illustration" to create a different style
prompts.append(f"Illustration of {cleaned_text}")
else:
# For additional images, use different variations
variations = [
f"Digital art of {cleaned_text}",
f"Modern design of {cleaned_text}",
f"Professional illustration of {cleaned_text}",
f"Clean design of {cleaned_text}",
f"Beautiful visualization of {cleaned_text}",
f"Stylish representation of {cleaned_text}",
f"Contemporary design of {cleaned_text}",
f"Elegant illustration of {cleaned_text}"
]
variation_index = (i - 3) % len(variations)
prompts.append(variations[variation_index])
return prompts
def create_image_replacement_blocks(html_content: str, user_prompt: str) -> str:
"""Create search/replace blocks to replace placeholder images with generated Qwen images"""
if not user_prompt:
return ""
# Find existing image placeholders in the HTML first
import re
# Common patterns for placeholder images
placeholder_patterns = [
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>', # Base64 images
r'<img[^>]*src=["\']#["\'][^>]*>', # Empty src
r'<img[^>]*src=["\']about:blank["\'][^>]*>', # About blank
]
# Find all placeholder images
placeholder_images = []
for pattern in placeholder_patterns:
matches = re.findall(pattern, html_content, re.IGNORECASE)
placeholder_images.extend(matches)
# Filter out HF URLs from placeholders (they are real generated content)
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
# If no placeholder images found, look for any img tags
if not placeholder_images:
img_pattern = r'<img[^>]*>'
# Case-insensitive to catch <IMG> or mixed-case tags
placeholder_images = re.findall(img_pattern, html_content, re.IGNORECASE)
# Also look for div elements that might be image placeholders
div_placeholder_patterns = [
r'<div[^>]*class=["\'][^"\']*(?:image|img|photo|picture)[^"\']*["\'][^>]*>.*?</div>',
r'<div[^>]*id=["\'][^"\']*(?:image|img|photo|picture)[^"\']*["\'][^>]*>.*?</div>',
]
for pattern in div_placeholder_patterns:
matches = re.findall(pattern, html_content, re.IGNORECASE | re.DOTALL)
placeholder_images.extend(matches)
# Count how many images we need to generate
num_images_needed = len(placeholder_images)
if num_images_needed == 0:
return ""
# Generate image prompts based on the number of images found
image_prompts = extract_image_prompts_from_text(user_prompt, num_images_needed)
# Generate images for each prompt
generated_images = []
for i, prompt in enumerate(image_prompts):
image_html = generate_image_with_qwen(prompt, i, token=None) # TODO: Pass token from parent context
if not image_html.startswith("Error"):
generated_images.append((i, image_html))
if not generated_images:
return ""
# Create search/replace blocks
replacement_blocks = []
for i, (prompt_index, generated_image) in enumerate(generated_images):
if i < len(placeholder_images):
# Replace existing placeholder
placeholder = placeholder_images[i]
# Clean up the placeholder for better matching
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
# Try multiple variations of the placeholder for better matching
placeholder_variations = [
placeholder_clean,
placeholder_clean.replace('"', "'"),
placeholder_clean.replace("'", '"'),
re.sub(r'\s+', ' ', placeholder_clean),
placeholder_clean.replace(' ', ' '),
]
# Create a replacement block for each variation
for variation in placeholder_variations:
replacement_blocks.append(f"""{SEARCH_START}
{variation}
{DIVIDER}
{generated_image}
{REPLACE_END}""")
else:
# Add new image if we have more generated images than placeholders
# Find a good insertion point (after body tag or main content)
if '<body' in html_content:
body_end = html_content.find('>', html_content.find('<body')) + 1
insertion_point = html_content[:body_end] + '\n '
replacement_blocks.append(f"""{SEARCH_START}
{insertion_point}
{DIVIDER}
{insertion_point}
{generated_image}
{REPLACE_END}""")
return '\n\n'.join(replacement_blocks)
def create_image_replacement_blocks_text_to_image_single(html_content: str, prompt: str) -> str:
"""Create search/replace blocks that generate and insert ONLY ONE text-to-image result."""
if not prompt or not prompt.strip():
return ""
import re
# Detect placeholders similarly to the multi-image version
placeholder_patterns = [
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']#["\'][^>]*>',
r'<img[^>]*src=["\']about:blank["\'][^>]*>',
]
placeholder_images = []
for pattern in placeholder_patterns:
matches = re.findall(pattern, html_content, re.IGNORECASE)
if matches:
placeholder_images.extend(matches)
# Filter out HF URLs from placeholders (they are real generated content)
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
# Filter out HF URLs from placeholders (they are real generated content)
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
# Fallback to any <img> if no placeholders
if not placeholder_images:
img_pattern = r'<img[^>]*>'
placeholder_images = re.findall(img_pattern, html_content)
# Generate a single image
image_html = generate_image_with_qwen(prompt, 0, token=None) # TODO: Pass token from parent context
if image_html.startswith("Error"):
return ""
# Replace first placeholder if present
if placeholder_images:
placeholder = placeholder_images[0]
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
placeholder_variations = [
placeholder_clean,
placeholder_clean.replace('"', "'"),
placeholder_clean.replace("'", '"'),
re.sub(r'\s+', ' ', placeholder_clean),
placeholder_clean.replace(' ', ' '),
]
blocks = []
for variation in placeholder_variations:
blocks.append(f"""{SEARCH_START}
{variation}
{DIVIDER}
{image_html}
{REPLACE_END}""")
return '\n\n'.join(blocks)
# Otherwise insert after <body>
if '<body' in html_content:
body_end = html_content.find('>', html_content.find('<body')) + 1
insertion_point = html_content[:body_end] + '\n '
return f"""{SEARCH_START}
{insertion_point}
{DIVIDER}
{insertion_point}
{image_html}
{REPLACE_END}"""
# If no <body>, just append
return f"{SEARCH_START}\n\n{DIVIDER}\n{image_html}\n{REPLACE_END}"
def create_video_replacement_blocks_text_to_video(html_content: str, prompt: str, session_id: Optional[str] = None) -> str:
"""Create search/replace blocks that generate and insert ONLY ONE text-to-video result."""
if not prompt or not prompt.strip():
return ""
import re
# Detect the same placeholders as image counterparts, to replace the first image slot with a video
placeholder_patterns = [
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>',
r'<img[^>]*src=["\']#["\'][^>]*>',
r'<img[^>]*src=["\']about:blank["\'][^>]*>',
]
placeholder_images = []
for pattern in placeholder_patterns:
matches = re.findall(pattern, html_content, re.IGNORECASE)
if matches:
placeholder_images.extend(matches)
# Filter out HF URLs from placeholders (they are real generated content)
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
if not placeholder_images:
img_pattern = r'<img[^>]*>'
placeholder_images = re.findall(img_pattern, html_content)
video_html = generate_video_from_text(prompt, session_id=session_id, token=None) # TODO: Pass token from parent context
if video_html.startswith("Error"):
return ""
# Replace first placeholder if present
if placeholder_images:
placeholder = placeholder_images[0]
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
placeholder_variations = [
placeholder,
placeholder_clean,
placeholder_clean.replace('"', "'"),
placeholder_clean.replace("'", '"'),
re.sub(r'\s+', ' ', placeholder_clean),
placeholder_clean.replace(' ', ' '),
]
blocks = []
for variation in placeholder_variations:
blocks.append(f"""{SEARCH_START}
{variation}
{DIVIDER}
{video_html}
{REPLACE_END}""")
return '\n\n'.join(blocks)
# Otherwise insert after <body> with proper container
if '<body' in html_content:
body_start = html_content.find('<body')
body_end = html_content.find('>', body_start) + 1
opening_body_tag = html_content[body_start:body_end]
# Look for existing container elements to insert into
body_content_start = body_end
# Try to find a good insertion point within existing content structure
patterns_to_try = [
r'<main[^>]*>',
r'<section[^>]*class="[^"]*hero[^"]*"[^>]*>',
r'<div[^>]*class="[^"]*container[^"]*"[^>]*>',
r'<header[^>]*>',
]
insertion_point = None
for pattern in patterns_to_try:
import re
match = re.search(pattern, html_content[body_content_start:], re.IGNORECASE)
if match:
match_end = body_content_start + match.end()
# Find the end of this tag
tag_content = html_content[body_content_start + match.start():match_end]
insertion_point = html_content[:match_end] + '\n '
break
if not insertion_point:
# Fallback to right after body tag with container div
insertion_point = html_content[:body_end] + '\n '
video_with_container = f'<div class="video-container" style="margin: 20px 0; text-align: center;">\n {video_html}\n </div>'
return f"""{SEARCH_START}
{insertion_point}
{DIVIDER}
{insertion_point}
{video_with_container}
{REPLACE_END}"""
else:
return f"""{SEARCH_START}
{insertion_point}
{DIVIDER}
{insertion_point}
{video_html}
{REPLACE_END}"""
# If no <body>, just append
return f"{SEARCH_START}\n\n{DIVIDER}\n{video_html}\n{REPLACE_END}"
def create_music_replacement_blocks_text_to_music(html_content: str, prompt: str, session_id: Optional[str] = None) -> str:
"""Create search/replace blocks that insert ONE generated <audio> near the top of <body>."""
if not prompt or not prompt.strip():
return ""
audio_html = generate_music_from_text(prompt, session_id=session_id, token=None) # TODO: Pass token from parent context
if audio_html.startswith("Error"):
return ""
# Prefer inserting after the first <section>...</section> if present; else after <body>
import re
section_match = re.search(r"<section\b[\s\S]*?</section>", html_content, flags=re.IGNORECASE)
if section_match:
section_html = section_match.group(0)
section_clean = re.sub(r"\s+", " ", section_html.strip())
variations = [
section_html,
section_clean,
section_clean.replace('"', "'"),
section_clean.replace("'", '"'),
re.sub(r"\s+", " ", section_clean),
]
blocks = []
for v in variations:
blocks.append(f"""{SEARCH_START}
{v}
{DIVIDER}
{v}\n {audio_html}
{REPLACE_END}""")
return "\n\n".join(blocks)
if '<body' in html_content:
body_end = html_content.find('>', html_content.find('<body')) + 1
insertion_point = html_content[:body_end] + '\n '
return f"""{SEARCH_START}
{insertion_point}
{DIVIDER}
{insertion_point}
{audio_html}
{REPLACE_END}"""
# If no <body>, just append
return f"{SEARCH_START}\n\n{DIVIDER}\n{audio_html}\n{REPLACE_END}" |