Michele De Stefano
commited on
Commit
·
b066853
1
Parent(s):
1b8aef5
Now it is possible to process questions incrementally
Browse files- agent_factory.py +14 -19
- app.py +72 -37
- tools/video_sampling.py +0 -1
agent_factory.py
CHANGED
|
@@ -9,6 +9,7 @@ from langchain_ollama import ChatOllama
|
|
| 9 |
from langgraph.constants import START, END
|
| 10 |
from langgraph.graph import MessagesState, StateGraph
|
| 11 |
from langgraph.graph.graph import CompiledGraph
|
|
|
|
| 12 |
from langgraph.prebuilt import ToolNode
|
| 13 |
from pydantic import BaseModel
|
| 14 |
|
|
@@ -67,7 +68,6 @@ class AgentFactory:
|
|
| 67 |
"follow the rules explained above.\n"
|
| 68 |
)
|
| 69 |
|
| 70 |
-
__llm_for_decision: Runnable
|
| 71 |
__llm: Runnable
|
| 72 |
__tools: list[BaseTool]
|
| 73 |
|
|
@@ -115,30 +115,25 @@ class AgentFactory:
|
|
| 115 |
web_page_info_retriever,
|
| 116 |
youtube_video_to_frame_captions
|
| 117 |
]
|
| 118 |
-
self.__llm_for_decision = ChatOllama(
|
| 119 |
-
model=model,
|
| 120 |
-
temperature=1.0,
|
| 121 |
-
num_ctx=num_ctx
|
| 122 |
-
)
|
| 123 |
self.__llm = ChatOllama(
|
| 124 |
model=model,
|
| 125 |
temperature=temperature,
|
| 126 |
num_ctx=num_ctx
|
| 127 |
).bind_tools(tools=self.__tools)
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
def __run_llm(self, state: MessagesState) -> dict[str, Any]:
|
| 144 |
answer = self.__llm.invoke(state["messages"])
|
|
|
|
| 9 |
from langgraph.constants import START, END
|
| 10 |
from langgraph.graph import MessagesState, StateGraph
|
| 11 |
from langgraph.graph.graph import CompiledGraph
|
| 12 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 13 |
from langgraph.prebuilt import ToolNode
|
| 14 |
from pydantic import BaseModel
|
| 15 |
|
|
|
|
| 68 |
"follow the rules explained above.\n"
|
| 69 |
)
|
| 70 |
|
|
|
|
| 71 |
__llm: Runnable
|
| 72 |
__tools: list[BaseTool]
|
| 73 |
|
|
|
|
| 115 |
web_page_info_retriever,
|
| 116 |
youtube_video_to_frame_captions
|
| 117 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
self.__llm = ChatOllama(
|
| 119 |
model=model,
|
| 120 |
temperature=temperature,
|
| 121 |
num_ctx=num_ctx
|
| 122 |
).bind_tools(tools=self.__tools)
|
| 123 |
|
| 124 |
+
# llm_endpoint = HuggingFaceEndpoint(
|
| 125 |
+
# repo_id="Qwen/Qwen2.5-72B-Instruct",
|
| 126 |
+
# task="text-generation",
|
| 127 |
+
# max_new_tokens=num_ctx,
|
| 128 |
+
# do_sample=False,
|
| 129 |
+
# repetition_penalty=1.03,
|
| 130 |
+
# temperature=temperature,
|
| 131 |
+
# )
|
| 132 |
+
#
|
| 133 |
+
# self.__llm = (
|
| 134 |
+
# ChatHuggingFace(llm=llm_endpoint)
|
| 135 |
+
# .bind_tools(tools=self.__tools)
|
| 136 |
+
# )
|
| 137 |
|
| 138 |
def __run_llm(self, state: MessagesState) -> dict[str, Any]:
|
| 139 |
answer = self.__llm.invoke(state["messages"])
|
app.py
CHANGED
|
@@ -58,7 +58,11 @@ class BasicAgent:
|
|
| 58 |
return answer
|
| 59 |
|
| 60 |
|
| 61 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
api_url = DEFAULT_API_URL
|
| 63 |
questions_url = f"{api_url}/questions"
|
| 64 |
files_base_url = f"{api_url}/files"
|
|
@@ -70,26 +74,26 @@ def download_questions_and_files() -> dict[str, Any]:
|
|
| 70 |
questions_data = response.json()
|
| 71 |
if not questions_data:
|
| 72 |
print("Fetched questions list is empty.")
|
| 73 |
-
return {
|
| 74 |
"error": "Fetched questions list is empty or invalid format."
|
| 75 |
-
}
|
| 76 |
print(f"Fetched {len(questions_data)} questions.")
|
| 77 |
except requests.exceptions.RequestException as e:
|
| 78 |
print(f"Error fetching questions: {e}")
|
| 79 |
-
return {
|
| 80 |
"error": f"Error fetching questions: {e}"
|
| 81 |
-
}
|
| 82 |
except requests.exceptions.JSONDecodeError as e:
|
| 83 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 84 |
print(f"Response text: {response.text[:500]}")
|
| 85 |
-
return {
|
| 86 |
"error": f"Error decoding server response for questions: {e}"
|
| 87 |
-
}
|
| 88 |
except Exception as e:
|
| 89 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 90 |
-
return {
|
| 91 |
"error": f"An unexpected error occurred fetching questions: {e}"
|
| 92 |
-
}
|
| 93 |
|
| 94 |
# Save input questions and related files into the data subdirectory
|
| 95 |
try:
|
|
@@ -107,18 +111,39 @@ def download_questions_and_files() -> dict[str, Any]:
|
|
| 107 |
file.write(response.content)
|
| 108 |
except requests.exceptions.RequestException as e:
|
| 109 |
print(f"Error fetching question-related file: {e}")
|
| 110 |
-
return {
|
| 111 |
"error": f"Error fetching question-related file: {e}"
|
| 112 |
-
}
|
| 113 |
except Exception as e:
|
| 114 |
print(f"An unexpected error occurred fetching question-related file: {e}")
|
| 115 |
-
return {
|
| 116 |
"error": f"An unexpected error occurred fetching question-related file: {e}"
|
| 117 |
-
}
|
| 118 |
|
| 119 |
return questions_data
|
| 120 |
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
def run_and_submit_all() -> tuple[str, pd.DataFrame | None]:
|
| 123 |
"""
|
| 124 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
@@ -145,34 +170,46 @@ def run_and_submit_all() -> tuple[str, pd.DataFrame | None]:
|
|
| 145 |
print(agent_code)
|
| 146 |
|
| 147 |
# 2. Fetch Questions and related files (they get saved into the data directory)
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# 3. Run your Agent and save agent's answers for later review
|
|
|
|
|
|
|
| 151 |
results_log = []
|
| 152 |
-
answers_payload = []
|
| 153 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
|
|
|
| 168 |
if not answers_payload:
|
| 169 |
print("Agent did not produce any answers to submit.")
|
| 170 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
|
| 177 |
# 4. Prepare Submission
|
| 178 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
@@ -239,18 +276,16 @@ with gr.Blocks() as demo:
|
|
| 239 |
"""
|
| 240 |
**Instructions:**
|
| 241 |
|
| 242 |
-
1.
|
| 243 |
-
2.
|
| 244 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 245 |
|
| 246 |
---
|
| 247 |
**Disclaimers:**
|
| 248 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 249 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 250 |
"""
|
| 251 |
)
|
| 252 |
|
| 253 |
-
gr.LoginButton()
|
| 254 |
|
| 255 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 256 |
|
|
|
|
| 58 |
return answer
|
| 59 |
|
| 60 |
|
| 61 |
+
def retrieve_downloaded_questions() -> list[dict[str, Any]]:
|
| 62 |
+
with open(QUESTIONS_FILE_PATH, mode="r") as f:
|
| 63 |
+
return [json.loads(line) for line in f]
|
| 64 |
+
|
| 65 |
+
def download_questions_and_files() -> list[dict[str, Any]]:
|
| 66 |
api_url = DEFAULT_API_URL
|
| 67 |
questions_url = f"{api_url}/questions"
|
| 68 |
files_base_url = f"{api_url}/files"
|
|
|
|
| 74 |
questions_data = response.json()
|
| 75 |
if not questions_data:
|
| 76 |
print("Fetched questions list is empty.")
|
| 77 |
+
return [{
|
| 78 |
"error": "Fetched questions list is empty or invalid format."
|
| 79 |
+
}]
|
| 80 |
print(f"Fetched {len(questions_data)} questions.")
|
| 81 |
except requests.exceptions.RequestException as e:
|
| 82 |
print(f"Error fetching questions: {e}")
|
| 83 |
+
return [{
|
| 84 |
"error": f"Error fetching questions: {e}"
|
| 85 |
+
}]
|
| 86 |
except requests.exceptions.JSONDecodeError as e:
|
| 87 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 88 |
print(f"Response text: {response.text[:500]}")
|
| 89 |
+
return [{
|
| 90 |
"error": f"Error decoding server response for questions: {e}"
|
| 91 |
+
}]
|
| 92 |
except Exception as e:
|
| 93 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 94 |
+
return [{
|
| 95 |
"error": f"An unexpected error occurred fetching questions: {e}"
|
| 96 |
+
}]
|
| 97 |
|
| 98 |
# Save input questions and related files into the data subdirectory
|
| 99 |
try:
|
|
|
|
| 111 |
file.write(response.content)
|
| 112 |
except requests.exceptions.RequestException as e:
|
| 113 |
print(f"Error fetching question-related file: {e}")
|
| 114 |
+
return [{
|
| 115 |
"error": f"Error fetching question-related file: {e}"
|
| 116 |
+
}]
|
| 117 |
except Exception as e:
|
| 118 |
print(f"An unexpected error occurred fetching question-related file: {e}")
|
| 119 |
+
return [{
|
| 120 |
"error": f"An unexpected error occurred fetching question-related file: {e}"
|
| 121 |
+
}]
|
| 122 |
|
| 123 |
return questions_data
|
| 124 |
|
| 125 |
|
| 126 |
+
def create_answers_file_if_not_exists() -> None:
|
| 127 |
+
if not os.path.exists(AGENT_ANSWERS_FILE_PATH):
|
| 128 |
+
with open(AGENT_ANSWERS_FILE_PATH, 'w'):
|
| 129 |
+
pass
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def get_answers_payload() -> list[dict[str, Any]]:
|
| 133 |
+
with open(AGENT_ANSWERS_FILE_PATH, mode="r") as f:
|
| 134 |
+
answers_payload = [json.loads(line) for line in f]
|
| 135 |
+
return answers_payload
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def get_task_ids_to_process() -> list[str]:
|
| 139 |
+
with open(QUESTIONS_FILE_PATH, mode="r") as f:
|
| 140 |
+
all_tasks = set([json.loads(line)["task_id"] for line in f])
|
| 141 |
+
answers = get_answers_payload()
|
| 142 |
+
answered_tasks = set([answer["task_id"] for answer in answers])
|
| 143 |
+
tasks_to_answer = all_tasks - answered_tasks
|
| 144 |
+
return list(tasks_to_answer)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
def run_and_submit_all() -> tuple[str, pd.DataFrame | None]:
|
| 148 |
"""
|
| 149 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
|
| 170 |
print(agent_code)
|
| 171 |
|
| 172 |
# 2. Fetch Questions and related files (they get saved into the data directory)
|
| 173 |
+
if os.path.exists(QUESTIONS_FILE_PATH):
|
| 174 |
+
questions_data = retrieve_downloaded_questions()
|
| 175 |
+
else:
|
| 176 |
+
questions_data = download_questions_and_files()
|
| 177 |
|
| 178 |
# 3. Run your Agent and save agent's answers for later review
|
| 179 |
+
create_answers_file_if_not_exists()
|
| 180 |
+
task_ids_to_process = get_task_ids_to_process()
|
| 181 |
results_log = []
|
|
|
|
| 182 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 183 |
+
with open(AGENT_ANSWERS_FILE_PATH, mode="a") as f:
|
| 184 |
+
for item in questions_data:
|
| 185 |
+
task_id = item.get("task_id")
|
| 186 |
+
if task_id not in task_ids_to_process:
|
| 187 |
+
print(f"Skipping already answered question: {item}")
|
| 188 |
+
continue
|
| 189 |
+
question_text = json.dumps(item)
|
| 190 |
+
if not task_id or question_text is None:
|
| 191 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 192 |
+
continue
|
| 193 |
+
try:
|
| 194 |
+
answer_to_submit = agent(question_text)
|
| 195 |
+
answer_payload = {"task_id": task_id, "answer_to_submit": answer_to_submit}
|
| 196 |
+
json.dump(answer_payload, f)
|
| 197 |
+
f.write("\n")
|
| 198 |
+
f.flush()
|
| 199 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer_to_submit})
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 202 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 203 |
|
| 204 |
+
answers_payload = get_answers_payload()
|
| 205 |
if not answers_payload:
|
| 206 |
print("Agent did not produce any answers to submit.")
|
| 207 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 208 |
|
| 209 |
+
if len(answers_payload) < len(questions_data):
|
| 210 |
+
msg = "Still need to process all the questions. Rerun until all questions are answered."
|
| 211 |
+
print(msg)
|
| 212 |
+
return msg, pd.DataFrame(results_log)
|
| 213 |
|
| 214 |
# 4. Prepare Submission
|
| 215 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
| 276 |
"""
|
| 277 |
**Instructions:**
|
| 278 |
|
| 279 |
+
1. Read the `README.md` file for configuration.
|
| 280 |
+
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
| 281 |
|
| 282 |
---
|
| 283 |
**Disclaimers:**
|
| 284 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
|
| 285 |
"""
|
| 286 |
)
|
| 287 |
|
| 288 |
+
# gr.LoginButton()
|
| 289 |
|
| 290 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 291 |
|
tools/video_sampling.py
CHANGED
|
@@ -86,7 +86,6 @@ def extract_frame_captions(
|
|
| 86 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 87 |
inputs = captioning_processor(
|
| 88 |
frame,
|
| 89 |
-
text="Detailed image description:",
|
| 90 |
return_tensors="pt"
|
| 91 |
)
|
| 92 |
out = captioning_model.generate(**inputs)
|
|
|
|
| 86 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 87 |
inputs = captioning_processor(
|
| 88 |
frame,
|
|
|
|
| 89 |
return_tensors="pt"
|
| 90 |
)
|
| 91 |
out = captioning_model.generate(**inputs)
|