Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,47 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import plotly.graph_objects as go
|
| 3 |
-
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
-
|
|
|
|
| 7 |
"""
|
| 8 |
-
Create a plot showing model performance evolution over time.
|
| 9 |
-
|
| 10 |
Parameters:
|
| 11 |
-
df: DataFrame with columns ['model_name', 'release_date',
|
|
|
|
| 12 |
"""
|
| 13 |
# Sort by release date to ensure chronological order
|
| 14 |
df_sorted = df.sort_values('release_date').copy()
|
| 15 |
-
|
| 16 |
-
# Calculate cumulative best (SOTA) for
|
| 17 |
-
df_sorted['cumulative_best'] = df_sorted[
|
| 18 |
-
|
| 19 |
-
# Identify which models are SOTA (where
|
| 20 |
-
df_sorted['is_sota'] = df_sorted[
|
| 21 |
-
|
| 22 |
# Get SOTA models for the line
|
| 23 |
sota_df = df_sorted[df_sorted['is_sota']].copy()
|
| 24 |
-
|
| 25 |
# Create the plot
|
| 26 |
fig = go.Figure()
|
| 27 |
-
|
| 28 |
# Add all models as scatter points (gray for non-SOTA, cyan for SOTA)
|
| 29 |
fig.add_trace(go.Scatter(
|
| 30 |
x=df_sorted['release_date'],
|
| 31 |
-
y=df_sorted[
|
| 32 |
mode='markers',
|
| 33 |
name='All models',
|
| 34 |
marker=dict(
|
| 35 |
-
color=['#00CED1' if is_sota else 'lightgray'
|
| 36 |
for is_sota in df_sorted['is_sota']],
|
| 37 |
size=8,
|
| 38 |
opacity=0.7
|
| 39 |
),
|
| 40 |
text=df_sorted['model_name'],
|
| 41 |
-
hovertemplate='<b>%{text}</b><br>Date: %{x}<br>
|
| 42 |
))
|
| 43 |
-
|
| 44 |
# Add SOTA line (cumulative best)
|
| 45 |
fig.add_trace(go.Scatter(
|
| 46 |
x=df_sorted['release_date'],
|
|
@@ -48,14 +49,14 @@ def create_sota_plot(df):
|
|
| 48 |
mode='lines',
|
| 49 |
name='State-of-the-art (cumulative best)',
|
| 50 |
line=dict(color='#00CED1', width=2, dash='solid'),
|
| 51 |
-
hovertemplate='SOTA
|
| 52 |
))
|
| 53 |
-
|
| 54 |
# Add labels for SOTA models (models that improved the best score)
|
| 55 |
for _, row in sota_df.iterrows():
|
| 56 |
fig.add_annotation(
|
| 57 |
x=row['release_date'],
|
| 58 |
-
y=row[
|
| 59 |
text=row['model_name'],
|
| 60 |
showarrow=True,
|
| 61 |
arrowhead=2,
|
|
@@ -66,12 +67,12 @@ def create_sota_plot(df):
|
|
| 66 |
ay=-30,
|
| 67 |
font=dict(size=10)
|
| 68 |
)
|
| 69 |
-
|
| 70 |
# Update layout
|
| 71 |
fig.update_layout(
|
| 72 |
-
title='Evolution of Model Performance Over Time',
|
| 73 |
xaxis_title='Release Date',
|
| 74 |
-
yaxis_title='
|
| 75 |
xaxis=dict(
|
| 76 |
showgrid=True,
|
| 77 |
gridcolor='lightgray'
|
|
@@ -91,17 +92,18 @@ def create_sota_plot(df):
|
|
| 91 |
),
|
| 92 |
hovermode='closest'
|
| 93 |
)
|
| 94 |
-
|
| 95 |
return fig
|
| 96 |
|
|
|
|
| 97 |
def create_sample_dataframe():
|
| 98 |
"""
|
| 99 |
-
Create a sample DataFrame with model performance
|
| 100 |
"""
|
| 101 |
-
# Create sample data
|
| 102 |
data = {
|
| 103 |
'model_name': [
|
| 104 |
-
'SIFT + FVs', 'AlexNet', 'VGG-16', 'GoogLeNet', 'ResNet-50',
|
| 105 |
'SPPNet', 'Inception V2', 'Inception V3', 'ResNet-152', 'DenseNet',
|
| 106 |
'MobileNet', 'NASNET-A(6)', 'EfficientNet', 'Vision Transformer',
|
| 107 |
'CoAtNet-7', 'CLIP', 'DALL-E', 'GPT-Vision', 'Model-X', 'Model-Y',
|
|
@@ -118,71 +120,185 @@ def create_sample_dataframe():
|
|
| 118 |
'2013-03-10', '2013-07-22', '2014-01-15', '2015-03-20', '2016-02-14',
|
| 119 |
'2017-06-30', '2018-09-12', '2019-02-28', '2020-04-15', '2021-08-30'
|
| 120 |
]),
|
| 121 |
-
'
|
| 122 |
53.0, 65.0, 71.5, 74.8, 76.0,
|
| 123 |
74.0, 78.0, 81.0, 77.8, 79.2,
|
| 124 |
70.6, 82.7, 84.3, 85.2,
|
| 125 |
90.88, 86.5, 87.0, 87.79, 87.73, 88.1,
|
| 126 |
-
# Scores for non-SOTA models
|
| 127 |
58.0, 62.0, 68.0, 72.0, 73.5,
|
| 128 |
75.0, 78.5, 80.0, 82.0, 84.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
]
|
| 130 |
}
|
| 131 |
-
|
| 132 |
return pd.DataFrame(data)
|
| 133 |
|
|
|
|
| 134 |
# Create Gradio interface
|
| 135 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 136 |
-
gr.Markdown("# State-of-the-Art Models Timeline with
|
| 137 |
gr.Markdown("""
|
| 138 |
-
This visualization shows the evolution of model performance over time.
|
| 139 |
-
The line represents the cumulative best (SOTA) score achieved up to each point in time.
|
| 140 |
""")
|
| 141 |
-
|
| 142 |
-
plot = gr.Plot(label="Model Performance Evolution")
|
| 143 |
-
|
| 144 |
# Create the main DataFrame inline
|
| 145 |
df_main = create_sample_dataframe()
|
| 146 |
-
|
| 147 |
-
#
|
|
|
|
|
|
|
|
|
|
| 148 |
with gr.Row():
|
| 149 |
-
with gr.Column():
|
|
|
|
| 150 |
gr.Markdown(f"**Total models in dataset:** {len(df_main)}")
|
| 151 |
-
gr.Markdown(
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
# Create plot on load
|
| 155 |
-
demo.load(
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
# Add interactive controls
|
| 158 |
with gr.Row():
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
# DataFrame display (initially hidden)
|
| 163 |
df_display = gr.Dataframe(
|
| 164 |
value=df_main,
|
| 165 |
label="Model Performance Data",
|
| 166 |
visible=False
|
| 167 |
)
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
show_data_btn.click(
|
| 175 |
-
fn=
|
| 176 |
outputs=df_display
|
| 177 |
)
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
gr.Markdown("""
|
| 180 |
### About this visualization:
|
| 181 |
-
- **
|
|
|
|
| 182 |
- **Cyan dots**: Models that achieved a new SOTA when released
|
| 183 |
- **Gray dots**: Other models that didn't beat the existing SOTA
|
| 184 |
-
- **Hover over points**: See model names, release dates, and
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
""")
|
| 187 |
|
| 188 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import plotly.graph_objects as go
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
+
|
| 6 |
+
def create_sota_plot(df, metric='accuracy'):
|
| 7 |
"""
|
| 8 |
+
Create a plot showing model performance evolution over time for a selected metric.
|
| 9 |
+
|
| 10 |
Parameters:
|
| 11 |
+
df: DataFrame with columns ['model_name', 'release_date', and metric columns]
|
| 12 |
+
metric: The metric column to visualize
|
| 13 |
"""
|
| 14 |
# Sort by release date to ensure chronological order
|
| 15 |
df_sorted = df.sort_values('release_date').copy()
|
| 16 |
+
|
| 17 |
+
# Calculate cumulative best (SOTA) for the selected metric
|
| 18 |
+
df_sorted['cumulative_best'] = df_sorted[metric].cummax()
|
| 19 |
+
|
| 20 |
+
# Identify which models are SOTA (where metric equals cumulative best)
|
| 21 |
+
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
|
| 22 |
+
|
| 23 |
# Get SOTA models for the line
|
| 24 |
sota_df = df_sorted[df_sorted['is_sota']].copy()
|
| 25 |
+
|
| 26 |
# Create the plot
|
| 27 |
fig = go.Figure()
|
| 28 |
+
|
| 29 |
# Add all models as scatter points (gray for non-SOTA, cyan for SOTA)
|
| 30 |
fig.add_trace(go.Scatter(
|
| 31 |
x=df_sorted['release_date'],
|
| 32 |
+
y=df_sorted[metric],
|
| 33 |
mode='markers',
|
| 34 |
name='All models',
|
| 35 |
marker=dict(
|
| 36 |
+
color=['#00CED1' if is_sota else 'lightgray'
|
| 37 |
for is_sota in df_sorted['is_sota']],
|
| 38 |
size=8,
|
| 39 |
opacity=0.7
|
| 40 |
),
|
| 41 |
text=df_sorted['model_name'],
|
| 42 |
+
hovertemplate=f'<b>%{{text}}</b><br>Date: %{{x}}<br>{metric.capitalize()}: %{{y:.2f}}<extra></extra>'
|
| 43 |
))
|
| 44 |
+
|
| 45 |
# Add SOTA line (cumulative best)
|
| 46 |
fig.add_trace(go.Scatter(
|
| 47 |
x=df_sorted['release_date'],
|
|
|
|
| 49 |
mode='lines',
|
| 50 |
name='State-of-the-art (cumulative best)',
|
| 51 |
line=dict(color='#00CED1', width=2, dash='solid'),
|
| 52 |
+
hovertemplate=f'SOTA {metric.capitalize()}: %{{y:.2f}}<br>Date: %{{x}}<extra></extra>'
|
| 53 |
))
|
| 54 |
+
|
| 55 |
# Add labels for SOTA models (models that improved the best score)
|
| 56 |
for _, row in sota_df.iterrows():
|
| 57 |
fig.add_annotation(
|
| 58 |
x=row['release_date'],
|
| 59 |
+
y=row[metric],
|
| 60 |
text=row['model_name'],
|
| 61 |
showarrow=True,
|
| 62 |
arrowhead=2,
|
|
|
|
| 67 |
ay=-30,
|
| 68 |
font=dict(size=10)
|
| 69 |
)
|
| 70 |
+
|
| 71 |
# Update layout
|
| 72 |
fig.update_layout(
|
| 73 |
+
title=f'Evolution of Model Performance Over Time - {metric.upper()}',
|
| 74 |
xaxis_title='Release Date',
|
| 75 |
+
yaxis_title=f'{metric.capitalize()} Score',
|
| 76 |
xaxis=dict(
|
| 77 |
showgrid=True,
|
| 78 |
gridcolor='lightgray'
|
|
|
|
| 92 |
),
|
| 93 |
hovermode='closest'
|
| 94 |
)
|
| 95 |
+
|
| 96 |
return fig
|
| 97 |
|
| 98 |
+
|
| 99 |
def create_sample_dataframe():
|
| 100 |
"""
|
| 101 |
+
Create a sample DataFrame with multiple metrics for model performance.
|
| 102 |
"""
|
| 103 |
+
# Create sample data with multiple metrics
|
| 104 |
data = {
|
| 105 |
'model_name': [
|
| 106 |
+
'SIFT + FVs', 'AlexNet', 'VGG-16', 'GoogLeNet', 'ResNet-50',
|
| 107 |
'SPPNet', 'Inception V2', 'Inception V3', 'ResNet-152', 'DenseNet',
|
| 108 |
'MobileNet', 'NASNET-A(6)', 'EfficientNet', 'Vision Transformer',
|
| 109 |
'CoAtNet-7', 'CLIP', 'DALL-E', 'GPT-Vision', 'Model-X', 'Model-Y',
|
|
|
|
| 120 |
'2013-03-10', '2013-07-22', '2014-01-15', '2015-03-20', '2016-02-14',
|
| 121 |
'2017-06-30', '2018-09-12', '2019-02-28', '2020-04-15', '2021-08-30'
|
| 122 |
]),
|
| 123 |
+
'accuracy': [
|
| 124 |
53.0, 65.0, 71.5, 74.8, 76.0,
|
| 125 |
74.0, 78.0, 81.0, 77.8, 79.2,
|
| 126 |
70.6, 82.7, 84.3, 85.2,
|
| 127 |
90.88, 86.5, 87.0, 87.79, 87.73, 88.1,
|
| 128 |
+
# Scores for non-SOTA models
|
| 129 |
58.0, 62.0, 68.0, 72.0, 73.5,
|
| 130 |
75.0, 78.5, 80.0, 82.0, 84.0
|
| 131 |
+
],
|
| 132 |
+
'top5_accuracy': [
|
| 133 |
+
71.0, 82.0, 89.5, 91.2, 92.5,
|
| 134 |
+
91.0, 93.5, 95.0, 94.0, 94.5,
|
| 135 |
+
89.5, 96.2, 97.1, 97.5,
|
| 136 |
+
98.5, 97.8, 98.0, 98.2, 98.1, 98.3,
|
| 137 |
+
# Top-5 scores for non-SOTA models
|
| 138 |
+
75.0, 80.0, 85.0, 88.0, 90.0,
|
| 139 |
+
91.5, 93.0, 95.5, 96.0, 96.5
|
| 140 |
+
],
|
| 141 |
+
'parameters_millions': [
|
| 142 |
+
0.5, 62, 138, 6.8, 25.6,
|
| 143 |
+
21.0, 11.2, 23.8, 60.3, 7.9,
|
| 144 |
+
4.2, 88.9, 66.0, 86.0,
|
| 145 |
+
2185.0, 428.0, 1200.0, 1750.0, 890.0, 920.0,
|
| 146 |
+
# Parameters for non-SOTA models
|
| 147 |
+
2.5, 3.8, 15.0, 8.5, 5.2,
|
| 148 |
+
12.0, 3.5, 6.7, 9.0, 11.5
|
| 149 |
+
],
|
| 150 |
+
'flops_billions': [
|
| 151 |
+
0.1, 1.5, 15.5, 1.5, 3.8,
|
| 152 |
+
2.5, 2.0, 5.7, 11.3, 2.8,
|
| 153 |
+
0.57, 23.8, 9.9, 16.9,
|
| 154 |
+
420.0, 85.0, 250.0, 380.0, 180.0, 195.0,
|
| 155 |
+
# FLOPs for non-SOTA models
|
| 156 |
+
0.3, 0.5, 2.0, 1.2, 0.8,
|
| 157 |
+
1.8, 0.4, 1.0, 1.5, 2.2
|
| 158 |
+
],
|
| 159 |
+
'inference_time_ms': [
|
| 160 |
+
85, 23, 45, 28, 35,
|
| 161 |
+
32, 26, 30, 48, 38,
|
| 162 |
+
18, 65, 42, 55,
|
| 163 |
+
120, 75, 95, 110, 88, 92,
|
| 164 |
+
# Inference time for non-SOTA models
|
| 165 |
+
15, 20, 30, 25, 22,
|
| 166 |
+
28, 12, 18, 24, 35
|
| 167 |
]
|
| 168 |
}
|
| 169 |
+
|
| 170 |
return pd.DataFrame(data)
|
| 171 |
|
| 172 |
+
|
| 173 |
# Create Gradio interface
|
| 174 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 175 |
+
gr.Markdown("# State-of-the-Art Models Timeline with Multiple Metrics")
|
| 176 |
gr.Markdown("""
|
| 177 |
+
This visualization shows the evolution of model performance over time across different metrics.
|
| 178 |
+
Use the dropdown to switch between metrics. The line represents the cumulative best (SOTA) score achieved up to each point in time.
|
| 179 |
""")
|
| 180 |
+
|
|
|
|
|
|
|
| 181 |
# Create the main DataFrame inline
|
| 182 |
df_main = create_sample_dataframe()
|
| 183 |
+
|
| 184 |
+
# Get available metrics (exclude non-metric columns)
|
| 185 |
+
metric_columns = [col for col in df_main.columns if col not in ['model_name', 'release_date']]
|
| 186 |
+
|
| 187 |
+
# Create layout with dropdown in upper right
|
| 188 |
with gr.Row():
|
| 189 |
+
with gr.Column(scale=3):
|
| 190 |
+
# Display data info
|
| 191 |
gr.Markdown(f"**Total models in dataset:** {len(df_main)}")
|
| 192 |
+
gr.Markdown(
|
| 193 |
+
f"**Date range:** {df_main['release_date'].min().date()} to {df_main['release_date'].max().date()}")
|
| 194 |
+
with gr.Column(scale=1):
|
| 195 |
+
metric_dropdown = gr.Dropdown(
|
| 196 |
+
choices=metric_columns,
|
| 197 |
+
value='accuracy',
|
| 198 |
+
label="Select Metric",
|
| 199 |
+
interactive=True
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
plot = gr.Plot(label="Model Performance Evolution")
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
# Function to update plot and statistics
|
| 206 |
+
def update_plot_and_stats(selected_metric):
|
| 207 |
+
fig = create_sota_plot(df_main, selected_metric)
|
| 208 |
+
best_value = df_main[selected_metric].max()
|
| 209 |
+
best_model = df_main.loc[df_main[selected_metric].idxmax(), 'model_name']
|
| 210 |
+
|
| 211 |
+
# Format statistics based on metric type
|
| 212 |
+
if selected_metric == 'parameters_millions':
|
| 213 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}M ({best_model})"
|
| 214 |
+
elif selected_metric == 'flops_billions':
|
| 215 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}B ({best_model})"
|
| 216 |
+
elif selected_metric == 'inference_time_ms':
|
| 217 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}ms ({best_model})"
|
| 218 |
+
else:
|
| 219 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.2f}% ({best_model})"
|
| 220 |
+
|
| 221 |
+
return fig, stats_text
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
# Display best score for selected metric
|
| 225 |
+
metric_stats = gr.Markdown()
|
| 226 |
+
|
| 227 |
# Create plot on load
|
| 228 |
+
demo.load(
|
| 229 |
+
fn=lambda: update_plot_and_stats('accuracy'),
|
| 230 |
+
outputs=[plot, metric_stats]
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# Update plot when metric changes
|
| 234 |
+
metric_dropdown.change(
|
| 235 |
+
fn=update_plot_and_stats,
|
| 236 |
+
inputs=metric_dropdown,
|
| 237 |
+
outputs=[plot, metric_stats]
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
# Add interactive controls
|
| 241 |
with gr.Row():
|
| 242 |
+
show_data_btn = gr.Button("Show/Hide DataFrame")
|
| 243 |
+
export_stats_btn = gr.Button("Export Statistics")
|
| 244 |
+
|
| 245 |
# DataFrame display (initially hidden)
|
| 246 |
df_display = gr.Dataframe(
|
| 247 |
value=df_main,
|
| 248 |
label="Model Performance Data",
|
| 249 |
visible=False
|
| 250 |
)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def toggle_dataframe():
|
| 254 |
+
return gr.Dataframe(value=df_main, visible=True)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def export_statistics():
|
| 258 |
+
stats = []
|
| 259 |
+
for metric in metric_columns:
|
| 260 |
+
best_value = df_main[metric].max()
|
| 261 |
+
best_model = df_main.loc[df_main[metric].idxmax(), 'model_name']
|
| 262 |
+
avg_value = df_main[metric].mean()
|
| 263 |
+
stats.append({
|
| 264 |
+
'Metric': metric.replace('_', ' ').title(),
|
| 265 |
+
'Best Value': f"{best_value:.2f}",
|
| 266 |
+
'Best Model': best_model,
|
| 267 |
+
'Average': f"{avg_value:.2f}"
|
| 268 |
+
})
|
| 269 |
+
stats_df = pd.DataFrame(stats)
|
| 270 |
+
return gr.Dataframe(value=stats_df, visible=True)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
stats_display = gr.Dataframe(
|
| 274 |
+
label="Statistics Summary",
|
| 275 |
+
visible=False
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
show_data_btn.click(
|
| 279 |
+
fn=toggle_dataframe,
|
| 280 |
outputs=df_display
|
| 281 |
)
|
| 282 |
+
|
| 283 |
+
export_stats_btn.click(
|
| 284 |
+
fn=export_statistics,
|
| 285 |
+
outputs=stats_display
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
gr.Markdown("""
|
| 289 |
### About this visualization:
|
| 290 |
+
- **Metric Selector**: Use the dropdown in the upper right to switch between different performance metrics
|
| 291 |
+
- **Cyan line**: Cumulative best (SOTA) score over time for the selected metric
|
| 292 |
- **Cyan dots**: Models that achieved a new SOTA when released
|
| 293 |
- **Gray dots**: Other models that didn't beat the existing SOTA
|
| 294 |
+
- **Hover over points**: See model names, release dates, and metric values
|
| 295 |
+
|
| 296 |
+
### Available Metrics:
|
| 297 |
+
- **Accuracy**: Top-1 accuracy on ImageNet (%)
|
| 298 |
+
- **Top5 Accuracy**: Top-5 accuracy on ImageNet (%)
|
| 299 |
+
- **Parameters (Millions)**: Model size in millions of parameters
|
| 300 |
+
- **FLOPs (Billions)**: Computational cost in billions of operations
|
| 301 |
+
- **Inference Time (ms)**: Time to process a single image
|
| 302 |
""")
|
| 303 |
|
| 304 |
demo.launch()
|