Spaces:
Paused
Paused
| import argparse | |
| import os | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.data as data | |
| import yaml | |
| from PIL import Image | |
| from torchvision import transforms, utils | |
| from tensorboard_logger import Logger | |
| from tqdm import tqdm | |
| from utils.functions import * | |
| import sys | |
| sys.path.append('pixel2style2pixel/') | |
| from pixel2style2pixel.models.stylegan2.model import Generator, get_keys | |
| torch.backends.cudnn.enabled = True | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = True | |
| torch.autograd.set_detect_anomaly(True) | |
| Image.MAX_IMAGE_PIXELS = None | |
| device = torch.device('cuda') | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--config', type=str, default='002', help='Path to the config file.') | |
| parser.add_argument('--dataset_path', type=str, default='./data/stylegan2-generate-images/', help='dataset path') | |
| parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan model') | |
| opts = parser.parse_args() | |
| StyleGAN = Generator(1024, 512, 8) | |
| state_dict = torch.load(opts.stylegan_model_path, map_location='cpu') | |
| StyleGAN.load_state_dict(get_keys(state_dict, 'decoder'), strict=True) | |
| StyleGAN.to(device) | |
| #seeds = np.array([torch.random.seed() for i in range(100000)]) | |
| seeds = np.load(opts.dataset_path + 'seeds_pytorch_1.8.1.npy') | |
| with torch.no_grad(): | |
| os.makedirs(opts.dataset_path + 'ims/', exist_ok=True) | |
| for i, seed in enumerate(tqdm(seeds)): | |
| torch.manual_seed(seed) | |
| z = torch.randn(1, 512).to(device) | |
| n = StyleGAN.make_noise() | |
| w = StyleGAN.get_latent(z) | |
| x, _ = StyleGAN([w], input_is_latent=True, noise=n) | |
| utils.save_image(clip_img(x), opts.dataset_path + 'ims/%06d.jpg'%i) | |